Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from torchvision.transforms import ToTensor, ToPILImage | |
| from PIL import Image | |
| class SobelOperator(nn.Module): | |
| SOBEL_KERNEL_X = torch.tensor( | |
| [[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]] | |
| ) | |
| SOBEL_KERNEL_Y = torch.tensor( | |
| [[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]] | |
| ) | |
| def __init__(self, device="cuda"): | |
| super(SobelOperator, self).__init__() | |
| self.device = device | |
| self.edge_conv_x = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( | |
| self.device | |
| ) | |
| self.edge_conv_y = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( | |
| self.device | |
| ) | |
| self.edge_conv_x.weight = nn.Parameter( | |
| self.SOBEL_KERNEL_X.view((1, 1, 3, 3)).to(self.device) | |
| ) | |
| self.edge_conv_y.weight = nn.Parameter( | |
| self.SOBEL_KERNEL_Y.view((1, 1, 3, 3)).to(self.device) | |
| ) | |
| def forward( | |
| self, | |
| image: Image.Image, | |
| low_threshold: float, | |
| high_threshold: float, | |
| output_type="pil", | |
| ) -> Image.Image | torch.Tensor | tuple[Image.Image, torch.Tensor]: | |
| # Convert PIL image to PyTorch tensor | |
| image_gray = image.convert("L") | |
| image_tensor = ToTensor()(image_gray).unsqueeze(0).to(self.device) | |
| # Compute gradients | |
| edge_x = self.edge_conv_x(image_tensor) | |
| edge_y = self.edge_conv_y(image_tensor) | |
| edge = torch.sqrt(torch.square(edge_x) + torch.square(edge_y)) | |
| # Apply thresholding | |
| edge.div_(edge.max()) # Normalize to 0-1 (in-place operation) | |
| edge[edge >= high_threshold] = 1.0 | |
| edge[edge <= low_threshold] = 0.0 | |
| # Convert the result back to a PIL image | |
| if output_type == "pil": | |
| return ToPILImage()(edge.squeeze(0).cpu()) | |
| elif output_type == "tensor": | |
| return edge | |
| elif output_type == "pil,tensor": | |
| return ToPILImage()(edge.squeeze(0).cpu()), edge | |
| class ScharrOperator(nn.Module): | |
| SCHARR_KERNEL_X = torch.tensor( | |
| [[-3.0, 0.0, 3.0], [-10.0, 0.0, 10.0], [-3.0, 0.0, 3.0]] | |
| ) | |
| SCHARR_KERNEL_Y = torch.tensor( | |
| [[-3.0, -10.0, -3.0], [0.0, 0.0, 0.0], [3.0, 10.0, 3.0]] | |
| ) | |
| def __init__(self, device="cuda"): | |
| super(ScharrOperator, self).__init__() | |
| self.device = device | |
| self.edge_conv_x = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( | |
| self.device | |
| ) | |
| self.edge_conv_y = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( | |
| self.device | |
| ) | |
| self.edge_conv_x.weight = nn.Parameter( | |
| self.SCHARR_KERNEL_X.view((1, 1, 3, 3)).to(self.device) | |
| ) | |
| self.edge_conv_y.weight = nn.Parameter( | |
| self.SCHARR_KERNEL_Y.view((1, 1, 3, 3)).to(self.device) | |
| ) | |
| def forward( | |
| self, | |
| image: Image.Image, | |
| low_threshold: float, | |
| high_threshold: float, | |
| output_type="pil", | |
| invert: bool = False, | |
| ) -> Image.Image | torch.Tensor | tuple[Image.Image, torch.Tensor]: | |
| # Convert PIL image to PyTorch tensor | |
| image_gray = image.convert("L") | |
| image_tensor = ToTensor()(image_gray).unsqueeze(0).to(self.device) | |
| # Compute gradients | |
| edge_x = self.edge_conv_x(image_tensor) | |
| edge_y = self.edge_conv_y(image_tensor) | |
| edge = torch.abs(edge_x) + torch.abs(edge_y) | |
| # Apply thresholding | |
| edge.div_(edge.max()) # Normalize to 0-1 (in-place operation) | |
| edge[edge >= high_threshold] = 1.0 | |
| edge[edge <= low_threshold] = 0.0 | |
| if invert: | |
| edge = 1 - edge | |
| # Convert the result back to a PIL image | |
| if output_type == "pil": | |
| return ToPILImage()(edge.squeeze(0).cpu()) | |
| elif output_type == "tensor": | |
| return edge | |
| elif output_type == "pil,tensor": | |
| return ToPILImage()(edge.squeeze(0).cpu()), edge | |