Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	QRCode pipeline
Browse files- qr-code.png +0 -0
- server/pipelines/controlnetLoraSD15QRCode.py +239 -0
    	
        qr-code.png
    ADDED
    
    |   | 
    	
        server/pipelines/controlnetLoraSD15QRCode.py
    ADDED
    
    | @@ -0,0 +1,239 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from diffusers import (
         | 
| 2 | 
            +
                StableDiffusionControlNetImg2ImgPipeline,
         | 
| 3 | 
            +
                ControlNetModel,
         | 
| 4 | 
            +
                LCMScheduler,
         | 
| 5 | 
            +
                AutoencoderTiny,
         | 
| 6 | 
            +
            )
         | 
| 7 | 
            +
            from compel import Compel
         | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            try:
         | 
| 11 | 
            +
                import intel_extension_for_pytorch as ipex  # type: ignore
         | 
| 12 | 
            +
            except:
         | 
| 13 | 
            +
                pass
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import psutil
         | 
| 16 | 
            +
            from config import Args
         | 
| 17 | 
            +
            from pydantic import BaseModel, Field
         | 
| 18 | 
            +
            from PIL import Image
         | 
| 19 | 
            +
            import math
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            taesd_model = "madebyollin/taesd"
         | 
| 22 | 
            +
            controlnet_model = "monster-labs/control_v1p_sd15_qrcode_monster"
         | 
| 23 | 
            +
            base_model = "nitrosocke/mo-di-diffusion"
         | 
| 24 | 
            +
            lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
         | 
| 25 | 
            +
            default_prompt = "abstract art of a men with curly hair by Pablo Picasso"
         | 
| 26 | 
            +
            page_content = """
         | 
| 27 | 
            +
            <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDv1.5</h1>
         | 
| 28 | 
            +
            <h3 class="text-xl font-bold">LCM + LoRA + Controlnet + QRCode</h3>
         | 
| 29 | 
            +
            <p class="text-sm">
         | 
| 30 | 
            +
                This demo showcases
         | 
| 31 | 
            +
                <a
         | 
| 32 | 
            +
                href="https://huggingface.co/blog/lcm_lora"
         | 
| 33 | 
            +
                target="_blank"
         | 
| 34 | 
            +
                class="text-blue-500 underline hover:no-underline">LCM LoRA</a>
         | 
| 35 | 
            +
            + ControlNet + Image to Imasge pipeline using
         | 
| 36 | 
            +
                <a
         | 
| 37 | 
            +
                href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
         | 
| 38 | 
            +
                target="_blank"
         | 
| 39 | 
            +
                class="text-blue-500 underline hover:no-underline">Diffusers</a
         | 
| 40 | 
            +
                > with a MJPEG stream server.
         | 
| 41 | 
            +
            </p>
         | 
| 42 | 
            +
            <p class="text-sm text-gray-500">
         | 
| 43 | 
            +
                Change the prompt to generate different images, accepts <a
         | 
| 44 | 
            +
                href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
         | 
| 45 | 
            +
                target="_blank"
         | 
| 46 | 
            +
                class="text-blue-500 underline hover:no-underline">Compel</a
         | 
| 47 | 
            +
                > syntax.
         | 
| 48 | 
            +
            </p>
         | 
| 49 | 
            +
            """
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            class Pipeline:
         | 
| 53 | 
            +
                class Info(BaseModel):
         | 
| 54 | 
            +
                    name: str = "controlnet+loras+sd15"
         | 
| 55 | 
            +
                    title: str = "LCM + LoRA + Controlnet"
         | 
| 56 | 
            +
                    description: str = "Generates an image from a text prompt"
         | 
| 57 | 
            +
                    input_mode: str = "image"
         | 
| 58 | 
            +
                    page_content: str = page_content
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                class InputParams(BaseModel):
         | 
| 61 | 
            +
                    prompt: str = Field(
         | 
| 62 | 
            +
                        default_prompt,
         | 
| 63 | 
            +
                        title="Prompt",
         | 
| 64 | 
            +
                        field="textarea",
         | 
| 65 | 
            +
                        id="prompt",
         | 
| 66 | 
            +
                    )
         | 
| 67 | 
            +
                    seed: int = Field(
         | 
| 68 | 
            +
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         | 
| 69 | 
            +
                    )
         | 
| 70 | 
            +
                    steps: int = Field(
         | 
| 71 | 
            +
                        5, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
         | 
| 72 | 
            +
                    )
         | 
| 73 | 
            +
                    width: int = Field(
         | 
| 74 | 
            +
                        512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         | 
| 75 | 
            +
                    )
         | 
| 76 | 
            +
                    height: int = Field(
         | 
| 77 | 
            +
                        512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
         | 
| 78 | 
            +
                    )
         | 
| 79 | 
            +
                    guidance_scale: float = Field(
         | 
| 80 | 
            +
                        1.0,
         | 
| 81 | 
            +
                        min=0,
         | 
| 82 | 
            +
                        max=2,
         | 
| 83 | 
            +
                        step=0.001,
         | 
| 84 | 
            +
                        title="Guidance Scale",
         | 
| 85 | 
            +
                        field="range",
         | 
| 86 | 
            +
                        hide=True,
         | 
| 87 | 
            +
                        id="guidance_scale",
         | 
| 88 | 
            +
                    )
         | 
| 89 | 
            +
                    strength: float = Field(
         | 
| 90 | 
            +
                        0.6,
         | 
| 91 | 
            +
                        min=0.25,
         | 
| 92 | 
            +
                        max=1.0,
         | 
| 93 | 
            +
                        step=0.001,
         | 
| 94 | 
            +
                        title="Strength",
         | 
| 95 | 
            +
                        field="range",
         | 
| 96 | 
            +
                        hide=True,
         | 
| 97 | 
            +
                        id="strength",
         | 
| 98 | 
            +
                    )
         | 
| 99 | 
            +
                    controlnet_scale: float = Field(
         | 
| 100 | 
            +
                        1.0,
         | 
| 101 | 
            +
                        min=0,
         | 
| 102 | 
            +
                        max=1.0,
         | 
| 103 | 
            +
                        step=0.001,
         | 
| 104 | 
            +
                        title="Controlnet Scale",
         | 
| 105 | 
            +
                        field="range",
         | 
| 106 | 
            +
                        hide=True,
         | 
| 107 | 
            +
                        id="controlnet_scale",
         | 
| 108 | 
            +
                    )
         | 
| 109 | 
            +
                    controlnet_start: float = Field(
         | 
| 110 | 
            +
                        0.0,
         | 
| 111 | 
            +
                        min=0,
         | 
| 112 | 
            +
                        max=1.0,
         | 
| 113 | 
            +
                        step=0.001,
         | 
| 114 | 
            +
                        title="Controlnet Start",
         | 
| 115 | 
            +
                        field="range",
         | 
| 116 | 
            +
                        hide=True,
         | 
| 117 | 
            +
                        id="controlnet_start",
         | 
| 118 | 
            +
                    )
         | 
| 119 | 
            +
                    controlnet_end: float = Field(
         | 
| 120 | 
            +
                        1.0,
         | 
| 121 | 
            +
                        min=0,
         | 
| 122 | 
            +
                        max=1.0,
         | 
| 123 | 
            +
                        step=0.001,
         | 
| 124 | 
            +
                        title="Controlnet End",
         | 
| 125 | 
            +
                        field="range",
         | 
| 126 | 
            +
                        hide=True,
         | 
| 127 | 
            +
                        id="controlnet_end",
         | 
| 128 | 
            +
                    )
         | 
| 129 | 
            +
                    blend: float = Field(
         | 
| 130 | 
            +
                        0.1,
         | 
| 131 | 
            +
                        min=0.0,
         | 
| 132 | 
            +
                        max=1.0,
         | 
| 133 | 
            +
                        step=0.001,
         | 
| 134 | 
            +
                        title="Blend",
         | 
| 135 | 
            +
                        field="range",
         | 
| 136 | 
            +
                        hide=True,
         | 
| 137 | 
            +
                        id="blend",
         | 
| 138 | 
            +
                    )
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
         | 
| 141 | 
            +
                    controlnet_qrcode = ControlNetModel.from_pretrained(
         | 
| 142 | 
            +
                        controlnet_model, torch_dtype=torch_dtype, subfolder="v2"
         | 
| 143 | 
            +
                    ).to(device)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    if args.safety_checker:
         | 
| 146 | 
            +
                        self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
         | 
| 147 | 
            +
                            base_model,
         | 
| 148 | 
            +
                            controlnet=controlnet_qrcode,
         | 
| 149 | 
            +
                        )
         | 
| 150 | 
            +
                    else:
         | 
| 151 | 
            +
                        self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
         | 
| 152 | 
            +
                            base_model,
         | 
| 153 | 
            +
                            safety_checker=None,
         | 
| 154 | 
            +
                            controlnet=controlnet_qrcode,
         | 
| 155 | 
            +
                        )
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    self.control_image = Image.open(
         | 
| 158 | 
            +
                        "qr-code.png").convert("RGB").resize((512, 512))
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    self.pipe.scheduler = LCMScheduler.from_config(
         | 
| 161 | 
            +
                        self.pipe.scheduler.config)
         | 
| 162 | 
            +
                    self.pipe.set_progress_bar_config(disable=True)
         | 
| 163 | 
            +
                    if device.type != "mps":
         | 
| 164 | 
            +
                        self.pipe.unet.to(memory_format=torch.channels_last)
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    if args.taesd:
         | 
| 167 | 
            +
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         | 
| 168 | 
            +
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         | 
| 169 | 
            +
                        ).to(device)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    # Load LCM LoRA
         | 
| 172 | 
            +
                    self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
         | 
| 173 | 
            +
                    self.pipe.to(device=device, dtype=torch_dtype).to(device)
         | 
| 174 | 
            +
                    if args.compel:
         | 
| 175 | 
            +
                        self.compel_proc = Compel(
         | 
| 176 | 
            +
                            tokenizer=self.pipe.tokenizer,
         | 
| 177 | 
            +
                            text_encoder=self.pipe.text_encoder,
         | 
| 178 | 
            +
                            truncate_long_prompts=False,
         | 
| 179 | 
            +
                        )
         | 
| 180 | 
            +
                    if args.torch_compile:
         | 
| 181 | 
            +
                        self.pipe.unet = torch.compile(
         | 
| 182 | 
            +
                            self.pipe.unet, mode="reduce-overhead", fullgraph=True
         | 
| 183 | 
            +
                        )
         | 
| 184 | 
            +
                        self.pipe.vae = torch.compile(
         | 
| 185 | 
            +
                            self.pipe.vae, mode="reduce-overhead", fullgraph=True
         | 
| 186 | 
            +
                        )
         | 
| 187 | 
            +
                        self.pipe(
         | 
| 188 | 
            +
                            prompt="warmup",
         | 
| 189 | 
            +
                            image=[Image.new("RGB", (512, 512))],
         | 
| 190 | 
            +
                            control_image=[Image.new("RGB", (512, 512))],
         | 
| 191 | 
            +
                        )
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                def predict(self, params: "Pipeline.InputParams") -> Image.Image:
         | 
| 194 | 
            +
                    generator = torch.manual_seed(params.seed)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    prompt = f"modern disney style {params.prompt}"
         | 
| 197 | 
            +
                    prompt_embeds = None
         | 
| 198 | 
            +
                    prompt = params.prompt
         | 
| 199 | 
            +
                    if hasattr(self, "compel_proc"):
         | 
| 200 | 
            +
                        prompt_embeds = self.compel_proc(prompt)
         | 
| 201 | 
            +
                        prompt = None
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    steps = params.steps
         | 
| 204 | 
            +
                    strength = params.strength
         | 
| 205 | 
            +
                    if int(steps * strength) < 1:
         | 
| 206 | 
            +
                        steps = math.ceil(1 / max(0.10, strength))
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    blend_qr_image = Image.blend(
         | 
| 209 | 
            +
                        params.image,
         | 
| 210 | 
            +
                        self.control_image,
         | 
| 211 | 
            +
                        alpha=params.blend
         | 
| 212 | 
            +
                    )
         | 
| 213 | 
            +
                    results = self.pipe(
         | 
| 214 | 
            +
                        image=blend_qr_image,
         | 
| 215 | 
            +
                        control_image=self.control_image,
         | 
| 216 | 
            +
                        prompt=prompt,
         | 
| 217 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 218 | 
            +
                        generator=generator,
         | 
| 219 | 
            +
                        strength=strength,
         | 
| 220 | 
            +
                        num_inference_steps=steps,
         | 
| 221 | 
            +
                        guidance_scale=params.guidance_scale,
         | 
| 222 | 
            +
                        width=params.width,
         | 
| 223 | 
            +
                        height=params.height,
         | 
| 224 | 
            +
                        output_type="pil",
         | 
| 225 | 
            +
                        controlnet_conditioning_scale=params.controlnet_scale,
         | 
| 226 | 
            +
                        control_guidance_start=params.controlnet_start,
         | 
| 227 | 
            +
                        control_guidance_end=params.controlnet_end,
         | 
| 228 | 
            +
                    )
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    nsfw_content_detected = (
         | 
| 231 | 
            +
                        results.nsfw_content_detected[0]
         | 
| 232 | 
            +
                        if "nsfw_content_detected" in results
         | 
| 233 | 
            +
                        else False
         | 
| 234 | 
            +
                    )
         | 
| 235 | 
            +
                    if nsfw_content_detected:
         | 
| 236 | 
            +
                        return None
         | 
| 237 | 
            +
                    result_image = results.images[0]
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    return result_image
         | 
