Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import open3d as o3d | |
| torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') | |
| feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
| model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
| def process_image(image): | |
| # prepare image for the model | |
| encoding = feature_extractor(image, return_tensors="pt") | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**encoding) | |
| predicted_depth = outputs.predicted_depth | |
| # interpolate to original size | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=image.size[::-1], | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze() | |
| output = prediction.cpu().numpy() | |
| depth_image = (output * 255 / np.max(output)).astype('uint8') | |
| # create_obj(formatted, "test.obj") | |
| create_obj_2(np.array(image), depth_image) | |
| # img = Image.fromarray(formatted) | |
| return "output.gltf" | |
| # return result | |
| # gradio.inputs.Image3D(self, label=None, optional=False) | |
| def create_obj_2(rgb_image, depth_image): | |
| depth_o3d = o3d.geometry.Image(depth_image) | |
| image_o3d = o3d.geometry.Image(rgb_image) | |
| rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d) | |
| w = int(depth_image.shape[0]) | |
| h = int(depth_image.shape[1]) | |
| FOV = np.pi/4 | |
| camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() | |
| camera_intrinsic.set_intrinsics(w, h, w*0.5, h*0.5, w*0.5, h*0.5 ) | |
| pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image,camera_intrinsic) | |
| print('normals') | |
| pcd.normals = o3d.utility.Vector3dVector(np.zeros((1, 3))) # invalidate existing normals | |
| pcd.estimate_normals() | |
| # pcd.orient_normals_consistent_tangent_plane(100) | |
| print('run Poisson surface reconstruction') | |
| with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: | |
| mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9) | |
| print(mesh) | |
| o3d.io.write_triangle_mesh("output.gltf",mesh,write_triangle_uvs=True) | |
| return "output.gltf" | |
| title = "Interactive demo: DPT + 3D" | |
| description = "Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation." | |
| examples =[['cats.jpg']] | |
| iface = gr.Interface(fn=process_image, | |
| inputs=gr.inputs.Image(type="pil"), | |
| outputs=gr.outputs.Image3D(label="predicted depth", clear_color=[1.0,1.0,1.0,1.0]), | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| allow_flagging="never", | |
| enable_queue=True) | |
| iface.launch(debug=True) |