File size: 8,461 Bytes
c376f4f
9982a93
 
 
 
 
6c82c95
 
 
 
 
c376f4f
6c82c95
 
 
 
c376f4f
 
6c82c95
c376f4f
9982a93
 
 
 
 
 
 
 
 
 
c376f4f
146fed7
6c82c95
 
 
 
c376f4f
6c82c95
 
 
 
 
c376f4f
6c82c95
 
c376f4f
9982a93
6c82c95
 
 
9982a93
6c82c95
c376f4f
6c82c95
 
 
 
 
c376f4f
 
 
 
 
 
 
6c82c95
 
 
c376f4f
9982a93
c376f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c82c95
 
9982a93
6c82c95
 
 
 
 
 
 
c376f4f
6c82c95
 
 
 
 
 
c376f4f
6c82c95
 
 
 
 
 
 
 
c376f4f
 
6c82c95
 
 
 
 
 
 
 
 
 
 
c376f4f
 
 
6c82c95
 
 
c376f4f
 
 
 
 
 
 
 
6c82c95
c376f4f
 
6c82c95
 
 
c376f4f
6c82c95
 
 
 
 
f02b7b3
6c82c95
 
 
083f815
6c82c95
083f815
6c82c95
 
 
f02b7b3
505b98a
 
083f815
 
2918353
f02b7b3
 
 
083f815
f02b7b3
 
 
 
 
 
083f815
f02b7b3
 
 
 
 
c376f4f
 
 
f02b7b3
 
 
 
 
 
 
c376f4f
 
f02b7b3
 
 
 
c376f4f
 
 
f02b7b3
 
 
 
 
 
 
 
 
 
 
 
c376f4f
 
 
 
 
f02b7b3
 
c376f4f
 
 
f02b7b3
 
 
 
 
 
 
 
 
 
 
083f815
6c82c95
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
from transformers import (
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
    AutomaticSpeechRecognitionPipeline,
)
import gradio as gr
import json
from difflib import Differ
import ffmpeg
from pathlib import Path
import spaces

# Set true if you're using huggingface inference API API https://huggingface.co/inference-api
API_BACKEND = True
# MODEL = 'facebook/wav2vec2-large-960h-lv60-self'
MODEL = "facebook/wav2vec2-large-960h"
# MODEL = "facebook/wav2vec2-base-960h"
# MODEL = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"

# Load model and processor for manual processing (Spaces Zero compatible)
model = Wav2Vec2ForCTC.from_pretrained(MODEL).to("cuda")
processor = Wav2Vec2Processor.from_pretrained(MODEL)

# Create pipeline with pre-loaded model and processor
speech_recognizer = AutomaticSpeechRecognitionPipeline(
    model=model,
    feature_extractor=processor.feature_extractor,
    tokenizer=processor.tokenizer,
    device=0,  # Use first CUDA device
)


videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)

samples_data = sorted(Path("examples").glob("*.json"))
SAMPLES = []
for file in samples_data:
    with open(file) as f:
        sample = json.load(f)
    SAMPLES.append(sample)
VIDEOS = list(map(lambda x: [x["video"]], SAMPLES))


@spaces.GPU(duration=120)
def speech_to_text(video_file_path):
    """
    Takes a video path to convert to audio, transcribe audio channel to text and char timestamps

    Using AutomaticSpeechRecognitionPipeline with pre-loaded model for Spaces Zero compatibility
    """
    if video_file_path == None:
        raise ValueError("Error no video input")

    video_path = Path(video_file_path)
    try:
        # convert video to audio 16k using PIPE to audio_memory
        audio_memory, _ = (
            ffmpeg.input(video_path)
            .output("-", format="wav", ac=1, ar="16k")
            .overwrite_output()
            .global_args("-loglevel", "quiet")
            .run(capture_stdout=True)
        )
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    try:
        print("Transcribing via local model")
        output = speech_recognizer(
            audio_memory,
            return_timestamps="char",
            chunk_length_s=10,
            stride_length_s=(4, 2),
        )

        transcription = output["text"].lower()
        timestamps = [
            [
                chunk["text"].lower(),
                chunk["timestamp"][0].tolist(),
                chunk["timestamp"][1].tolist(),
            ]
            for chunk in output["chunks"]
        ]
        return (transcription, transcription, timestamps)
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)


def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
    """
    Given original video input, text transcript + timestamps,
    and edit ext cuts video segments into a single video
    """

    video_path = Path(video_in)
    video_file_name = video_path.stem
    if video_in == None or text_in == None or transcription == None:
        raise ValueError("Inputs undefined")

    d = Differ()
    # compare original transcription with edit text
    diff_chars = d.compare(transcription, text_in)
    # remove all text aditions from diff
    filtered = list(filter(lambda x: x[0] != "+", diff_chars))

    # filter timestamps to be removed
    # timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
    # return diff tokes and cutted video!!

    # groupping character timestamps so there are less cuts
    idx = 0
    grouped = {}
    for a, b in zip(filtered, timestamps):
        if a[0] != "-":
            if idx in grouped:
                grouped[idx].append(b)
            else:
                grouped[idx] = []
                grouped[idx].append(b)
        else:
            idx += 1

    # after grouping, gets the lower and upter start and time for each group
    timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]

    between_str = "+".join(
        map(lambda t: f"between(t,{t[0]},{t[1]})", timestamps_to_cut)
    )

    if timestamps_to_cut:
        video_file = ffmpeg.input(video_in)
        video = video_file.video.filter("select", f"({between_str})").filter(
            "setpts", "N/FRAME_RATE/TB"
        )
        audio = video_file.audio.filter("aselect", f"({between_str})").filter(
            "asetpts", "N/SR/TB"
        )

        output_video = f"./videos_out/{video_file_name}.mp4"
        ffmpeg.concat(video, audio, v=1, a=1).output(
            output_video
        ).overwrite_output().global_args("-loglevel", "quiet").run()
    else:
        output_video = video_in

    tokens = [(token[2:], token[0] if token[0] != " " else None) for token in filtered]

    return (tokens, output_video)


# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", elem_id="video-container")
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
video_out = gr.Video(label="Video Out")
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
examples = gr.Dataset(components=[video_in], samples=VIDEOS, type="index")

css = """
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
#video-container{
    max-width: 40rem;
}
"""
with gr.Blocks(css=css) as demo:
    transcription_var = gr.State()
    timestamps_var = gr.State()
    with gr.Row():
        with gr.Column():
            gr.Markdown("""
            # Edit Video By Editing Text
            This project is a quick proof of concept of a simple video editor where the edits
            are made by editing the audio transcription.
            Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
            with a fine tuned [Wav2Vec2 model using Connectionist Temporal Classification (CTC)](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self)
            you can predict not only the text transcription but also the [character or word base timestamps](https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline.__call__.return_timestamps)
            """)

    with gr.Row():
        examples.render()

        def load_example(id):
            video = SAMPLES[id]["video"]
            transcription = SAMPLES[id]["transcription"].lower()
            timestamps = SAMPLES[id]["timestamps"]

            return (video, transcription, transcription, timestamps)

        examples.click(
            load_example,
            inputs=[examples],
            outputs=[video_in, text_in, transcription_var, timestamps_var],
            queue=False,
        )
    with gr.Row():
        with gr.Column():
            video_in.render()
            transcribe_btn = gr.Button("Transcribe Audio")
            transcribe_btn.click(
                speech_to_text, [video_in], [text_in, transcription_var, timestamps_var]
            )

    with gr.Row():
        gr.Markdown("""
        ### Now edit as text
        After running the video transcription, you can make cuts to the text below (only cuts, not additions!)""")

    with gr.Row():
        with gr.Column():
            text_in.render()
            with gr.Row():
                cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
                # send audio path and hidden variables
                cut_btn.click(
                    cut_timestamps_to_video,
                    [video_in, transcription_var, text_in, timestamps_var],
                    [diff_out, video_out],
                )

                reset_transcription = gr.Button(
                    "Reset to last trascription", elem_id="reset_btn"
                )
                reset_transcription.click(lambda x: x, transcription_var, text_in)
        with gr.Column():
            video_out.render()
            diff_out.render()
    with gr.Row():
        gr.Markdown("""
        #### Video Credits

        1. [Cooking](https://vimeo.com/573792389)
        1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
        1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
        """)
demo.queue()
if __name__ == "__main__":
    demo.launch(debug=True)