Spaces:
Paused
Paused
| import os | |
| from math import sqrt | |
| from typing import Optional, Tuple, Union, List | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils.accelerate_utils import apply_forward_hook | |
| from diffusers.models.activations import get_activation | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.autoencoders.vae import ( | |
| DecoderOutput, | |
| DiagonalGaussianDistribution, | |
| ) | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
| os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1" | |
| torch.backends.cudnn.allow_tf32 = True | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.benchmark = True | |
| OPT_TEMPORAL_TILING = { | |
| 1: (1, 1), | |
| 17: (17, 17), | |
| 21: (13, 8), | |
| 25: (17, 8), | |
| 29: (17, 12), | |
| 33: (21, 12), | |
| 37: (21, 16), | |
| 41: (17, 12), | |
| 45: (21, 12), | |
| 49: (17, 8), | |
| 53: (21, 16), | |
| 57: (21, 12), | |
| 61: (13, 8), | |
| 65: (17, 12), | |
| 69: (21, 16), | |
| 73: (17, 8), | |
| 77: (17, 12), | |
| 81: (21, 12), | |
| 85: (21, 16), | |
| 89: (17, 12), | |
| 93: (21, 12), | |
| 97: (17, 8), | |
| 101: (21, 16), | |
| 105: (21, 12), | |
| 109: (13, 8), | |
| 113: (17, 12), | |
| 117: (21, 16), | |
| 121: (17, 8), | |
| 125: (17, 12), | |
| 129: (21, 12), | |
| 133: (21, 16), | |
| 137: (17, 12), | |
| 141: (21, 12), | |
| 145: (17, 8), | |
| 149: (21, 16), | |
| 153: (21, 12), | |
| 157: (13, 8), | |
| 161: (17, 12), | |
| 165: (21, 16), | |
| 169: (17, 8), | |
| 173: (17, 12), | |
| 177: (21, 12), | |
| 181: (21, 16), | |
| 185: (17, 12), | |
| 189: (21, 12), | |
| 193: (17, 8), | |
| 197: (21, 16), | |
| 201: (21, 12), | |
| 205: (13, 8), | |
| 209: (17, 12), | |
| 213: (21, 16), | |
| 217: (17, 8), | |
| 221: (17, 12), | |
| 225: (21, 12), | |
| 229: (21, 16), | |
| 233: (17, 12), | |
| 237: (21, 12), | |
| 241: (17, 8), | |
| } | |
| OPT_SPATIAL_TILING = { | |
| 160: (160, 160), | |
| 192: (192, 192), | |
| 224: (224, 224), | |
| 256: (256, 256), | |
| 288: (288, 288), | |
| 320: (320, 320), | |
| 352: (352, 352), | |
| 384: (384, 384), | |
| 448: (448, 448), | |
| 512: (288, 224), | |
| 576: (320, 256), | |
| 640: (352, 288), | |
| 704: (384, 320), | |
| 768: (416, 352), | |
| 896: (480, 416), | |
| 1024: (544, 480), | |
| 1152: (608, 544), | |
| 1280: (672, 608), | |
| 1408: (736, 672), | |
| } | |
| def prepare_causal_attention_mask( | |
| f: int, s: int, dtype: torch.dtype, device: torch.device, b: int | |
| ) -> torch.Tensor: | |
| return ( | |
| torch.ones((f, f), dtype=dtype, device=device) | |
| .tril_() | |
| .log_() | |
| .repeat_interleave(s, dim=0) | |
| .repeat_interleave(s, dim=1) | |
| .unsqueeze(0) | |
| .expand(b, -1, -1) | |
| .contiguous() | |
| ) | |
| class HunyuanVideoCausalConv3d(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: Union[int, Tuple[int, int, int]] = 3, | |
| stride: Union[int, Tuple[int, int, int]] = 1, | |
| padding: Union[int, Tuple[int, int, int]] = 0, | |
| dilation: Union[int, Tuple[int, int, int]] = 1, | |
| bias: bool = True, | |
| pad_mode: str = "replicate", | |
| ) -> None: | |
| super().__init__() | |
| kernel_size = ( | |
| (kernel_size, kernel_size, kernel_size) | |
| if isinstance(kernel_size, int) | |
| else kernel_size | |
| ) | |
| self.pad_mode = pad_mode | |
| self.time_causal_padding = ( | |
| kernel_size[0] // 2, | |
| kernel_size[0] // 2, | |
| kernel_size[1] // 2, | |
| kernel_size[1] // 2, | |
| kernel_size[2] - 1, | |
| 0, | |
| ) | |
| self.conv = nn.Conv3d( | |
| in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias | |
| ) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = F.pad( | |
| hidden_states, self.time_causal_padding, mode=self.pad_mode | |
| ) | |
| return self.conv(hidden_states) | |
| class HunyuanVideoUpsampleCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: Optional[int] = None, | |
| kernel_size: int = 3, | |
| stride: int = 1, | |
| bias: bool = True, | |
| upsample_factor: Tuple[float, float, float] = (2, 2, 2), | |
| ) -> None: | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| self.upsample_factor = upsample_factor | |
| self.conv = HunyuanVideoCausalConv3d( | |
| in_channels, out_channels, kernel_size, stride, bias=bias | |
| ) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| num_frames = hidden_states.size(2) | |
| dtp = hidden_states.dtype | |
| first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2) | |
| first_frame = F.interpolate( | |
| first_frame.squeeze(2), | |
| scale_factor=self.upsample_factor[1:], | |
| mode="nearest", | |
| ).unsqueeze(2).to(dtp) #force cast | |
| if num_frames > 1: | |
| other_frames = other_frames.contiguous() | |
| other_frames = F.interpolate( | |
| other_frames, scale_factor=self.upsample_factor, mode="nearest" | |
| ).to(dtp) # force cast | |
| hidden_states = torch.cat((first_frame, other_frames), dim=2) | |
| del first_frame | |
| del other_frames | |
| torch.cuda.empty_cache() | |
| else: | |
| hidden_states = first_frame | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoDownsampleCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| channels: int, | |
| out_channels: Optional[int] = None, | |
| padding: int = 1, | |
| kernel_size: int = 3, | |
| bias: bool = True, | |
| stride=2, | |
| ) -> None: | |
| super().__init__() | |
| out_channels = out_channels or channels | |
| self.conv = HunyuanVideoCausalConv3d( | |
| channels, out_channels, kernel_size, stride, padding, bias=bias | |
| ) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoResnetBlockCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: Optional[int] = None, | |
| dropout: float = 0.0, | |
| groups: int = 32, | |
| eps: float = 1e-6, | |
| non_linearity: str = "swish", | |
| ) -> None: | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| self.nonlinearity = get_activation(non_linearity) | |
| self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True) | |
| self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0) | |
| self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True) | |
| self.dropout = nn.Dropout(dropout) | |
| self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0) | |
| self.conv_shortcut = None | |
| if in_channels != out_channels: | |
| self.conv_shortcut = HunyuanVideoCausalConv3d( | |
| in_channels, out_channels, 1, 1, 0 | |
| ) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| dtp = hidden_states.dtype | |
| hidden_states = hidden_states.contiguous() | |
| residual = hidden_states | |
| hidden_states = self.norm1(hidden_states).to(dtp) #force cast | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| hidden_states = self.norm2(hidden_states).to(dtp) #force cast | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| residual = self.conv_shortcut(residual) | |
| hidden_states = hidden_states + residual | |
| return hidden_states | |
| class HunyuanVideoMidBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| add_attention: bool = True, | |
| attention_head_dim: int = 1, | |
| ) -> None: | |
| super().__init__() | |
| resnet_groups = ( | |
| resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| ) | |
| self.add_attention = add_attention | |
| # There is always at least one resnet | |
| resnets = [ | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ] | |
| attentions = [] | |
| for _ in range(num_layers): | |
| if self.add_attention: | |
| attentions.append( | |
| Attention( | |
| in_channels, | |
| heads=in_channels // attention_head_dim, | |
| dim_head=attention_head_dim, | |
| eps=resnet_eps, | |
| norm_num_groups=resnet_groups, | |
| residual_connection=True, | |
| bias=True, | |
| upcast_softmax=True, | |
| _from_deprecated_attn_block=True, | |
| ) | |
| ) | |
| else: | |
| attentions.append(None) | |
| resnets.append( | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.resnets[0](hidden_states) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| if attn is not None: | |
| batch_size, _, num_frames, height, width = hidden_states.shape | |
| hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3) | |
| mask = prepare_causal_attention_mask( | |
| num_frames, | |
| height * width, | |
| hidden_states.dtype, | |
| hidden_states.device, | |
| batch_size, | |
| ) | |
| hidden_states = attn(hidden_states, attention_mask=mask) | |
| hidden_states = hidden_states.unflatten( | |
| 1, (num_frames, height, width) | |
| ).permute(0, 4, 1, 2, 3) | |
| hidden_states = resnet(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoDownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| add_downsample: bool = True, | |
| downsample_stride: int = 2, | |
| downsample_padding: int = 1, | |
| ) -> None: | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| HunyuanVideoDownsampleCausal3D( | |
| out_channels, | |
| out_channels=out_channels, | |
| padding=downsample_padding, | |
| stride=downsample_stride, | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| for resnet in self.resnets: | |
| hidden_states = resnet(hidden_states) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoUpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| add_upsample: bool = True, | |
| upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2), | |
| ) -> None: | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| input_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=input_channels, | |
| out_channels=out_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList( | |
| [ | |
| HunyuanVideoUpsampleCausal3D( | |
| out_channels, | |
| out_channels=out_channels, | |
| upsample_factor=upsample_scale_factor, | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.upsamplers = None | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| for resnet in self.resnets: | |
| hidden_states = resnet(hidden_states) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoEncoder3D(nn.Module): | |
| r""" | |
| Causal encoder for 3D video-like data introduced | |
| in [Hunyuan Video](https://huggingface.co/papers/2412.03603). | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| down_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| double_z: bool = True, | |
| mid_block_add_attention=True, | |
| temporal_compression_ratio: int = 4, | |
| spatial_compression_ratio: int = 8, | |
| ) -> None: | |
| super().__init__() | |
| self.conv_in = HunyuanVideoCausalConv3d( | |
| in_channels, block_out_channels[0], kernel_size=3, stride=1 | |
| ) | |
| self.mid_block = None | |
| self.down_blocks = nn.ModuleList([]) | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| if down_block_type != "HunyuanVideoDownBlock3D": | |
| raise ValueError(f"Unsupported down_block_type: {down_block_type}") | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio)) | |
| num_time_downsample_layers = int(np.log2(temporal_compression_ratio)) | |
| if temporal_compression_ratio == 4: | |
| add_spatial_downsample = bool(i < num_spatial_downsample_layers) | |
| add_time_downsample = bool( | |
| i >= (len(block_out_channels) - 1 - num_time_downsample_layers) | |
| and not is_final_block | |
| ) | |
| elif temporal_compression_ratio == 8: | |
| add_spatial_downsample = bool(i < num_spatial_downsample_layers) | |
| add_time_downsample = bool(i < num_time_downsample_layers) | |
| else: | |
| raise ValueError( | |
| f"Unsupported time_compression_ratio: {temporal_compression_ratio}" | |
| ) | |
| downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1) | |
| downsample_stride_T = (2,) if add_time_downsample else (1,) | |
| downsample_stride = tuple(downsample_stride_T + downsample_stride_HW) | |
| down_block = HunyuanVideoDownBlock3D( | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| add_downsample=bool(add_spatial_downsample or add_time_downsample), | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| downsample_stride=downsample_stride, | |
| downsample_padding=0, | |
| ) | |
| self.down_blocks.append(down_block) | |
| self.mid_block = HunyuanVideoMidBlock3D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| add_attention=mid_block_add_attention, | |
| ) | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6 | |
| ) | |
| self.conv_act = nn.SiLU() | |
| conv_out_channels = 2 * out_channels if double_z else out_channels | |
| self.conv_out = HunyuanVideoCausalConv3d( | |
| block_out_channels[-1], conv_out_channels, kernel_size=3 | |
| ) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.conv_in(hidden_states) | |
| for down_block in self.down_blocks: | |
| hidden_states = down_block(hidden_states) | |
| hidden_states = self.mid_block(hidden_states) | |
| hidden_states = self.conv_norm_out(hidden_states) | |
| hidden_states = self.conv_act(hidden_states) | |
| hidden_states = self.conv_out(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoDecoder3D(nn.Module): | |
| r""" | |
| Causal decoder for 3D video-like data introduced | |
| in [Hunyuan Video](https://huggingface.co/papers/2412.03603). | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| up_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| mid_block_add_attention=True, | |
| time_compression_ratio: int = 4, | |
| spatial_compression_ratio: int = 8, | |
| ): | |
| super().__init__() | |
| self.layers_per_block = layers_per_block | |
| self.conv_in = HunyuanVideoCausalConv3d( | |
| in_channels, block_out_channels[-1], kernel_size=3, stride=1 | |
| ) | |
| self.up_blocks = nn.ModuleList([]) | |
| # mid | |
| self.mid_block = HunyuanVideoMidBlock3D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| add_attention=mid_block_add_attention, | |
| ) | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| if up_block_type != "HunyuanVideoUpBlock3D": | |
| raise ValueError(f"Unsupported up_block_type: {up_block_type}") | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) | |
| num_time_upsample_layers = int(np.log2(time_compression_ratio)) | |
| if time_compression_ratio == 4: | |
| add_spatial_upsample = bool(i < num_spatial_upsample_layers) | |
| add_time_upsample = bool( | |
| i >= len(block_out_channels) - 1 - num_time_upsample_layers | |
| and not is_final_block | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Unsupported time_compression_ratio: {time_compression_ratio}" | |
| ) | |
| upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) | |
| upsample_scale_factor_T = (2,) if add_time_upsample else (1,) | |
| upsample_scale_factor = tuple( | |
| upsample_scale_factor_T + upsample_scale_factor_HW | |
| ) | |
| up_block = HunyuanVideoUpBlock3D( | |
| num_layers=self.layers_per_block + 1, | |
| in_channels=prev_output_channel, | |
| out_channels=output_channel, | |
| add_upsample=bool(add_spatial_upsample or add_time_upsample), | |
| upsample_scale_factor=upsample_scale_factor, | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6 | |
| ) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = HunyuanVideoCausalConv3d( | |
| block_out_channels[0], out_channels, kernel_size=3 | |
| ) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| dtp = hidden_states.dtype | |
| hidden_states = self.conv_in(hidden_states) | |
| hidden_states = self.mid_block(hidden_states) | |
| for up_block in self.up_blocks: | |
| hidden_states = up_block(hidden_states) | |
| hidden_states = self.conv_norm_out(hidden_states) | |
| hidden_states = self.conv_act(hidden_states).to(dtp) # force cast | |
| hidden_states = self.conv_out(hidden_states) | |
| return hidden_states | |
| class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin): | |
| r""" | |
| A VAE model with KL loss for encoding videos into latents | |
| and decoding latent representations into videos. | |
| Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603). | |
| This model inherits from [`ModelMixin`]. Check the superclass | |
| documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| latent_channels: int = 16, | |
| down_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| ), | |
| up_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int] = (128, 256, 512, 512), | |
| layers_per_block: int = 2, | |
| act_fn: str = "silu", | |
| norm_num_groups: int = 32, | |
| scaling_factor: float = 0.476986, | |
| spatial_compression_ratio: int = 8, | |
| temporal_compression_ratio: int = 4, | |
| mid_block_add_attention: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.time_compression_ratio = temporal_compression_ratio | |
| self.encoder = HunyuanVideoEncoder3D( | |
| in_channels=in_channels, | |
| out_channels=latent_channels, | |
| down_block_types=down_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| norm_num_groups=norm_num_groups, | |
| act_fn=act_fn, | |
| double_z=True, | |
| mid_block_add_attention=mid_block_add_attention, | |
| temporal_compression_ratio=temporal_compression_ratio, | |
| spatial_compression_ratio=spatial_compression_ratio, | |
| ) | |
| self.decoder = HunyuanVideoDecoder3D( | |
| in_channels=latent_channels, | |
| out_channels=out_channels, | |
| up_block_types=up_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| norm_num_groups=norm_num_groups, | |
| act_fn=act_fn, | |
| time_compression_ratio=temporal_compression_ratio, | |
| spatial_compression_ratio=spatial_compression_ratio, | |
| mid_block_add_attention=mid_block_add_attention, | |
| ) | |
| self.quant_conv = nn.Conv3d( | |
| 2 * latent_channels, 2 * latent_channels, kernel_size=1 | |
| ) | |
| self.post_quant_conv = nn.Conv3d( | |
| latent_channels, latent_channels, kernel_size=1 | |
| ) | |
| self.spatial_compression_ratio = spatial_compression_ratio | |
| self.temporal_compression_ratio = temporal_compression_ratio | |
| self.use_slicing = False | |
| self.use_tiling = True | |
| self.use_framewise_encoding = True | |
| self.use_framewise_decoding = True | |
| self.tile_sample_min_height = 256 | |
| self.tile_sample_min_width = 256 | |
| self.tile_sample_min_num_frames = 16 | |
| self.tile_sample_stride_height = 192 | |
| self.tile_sample_stride_width = 192 | |
| self.tile_sample_stride_num_frames = 12 | |
| self.tile_size = None | |
| def _encode(self, x: torch.Tensor) -> torch.Tensor: | |
| _, _, num_frames, height, width = x.shape | |
| if self.use_framewise_decoding and num_frames > ( | |
| self.tile_sample_min_num_frames + 1 | |
| ): | |
| return self._temporal_tiled_encode(x) | |
| if self.use_tiling and ( | |
| width > self.tile_sample_min_width or height > self.tile_sample_min_height | |
| ): | |
| return self.tiled_encode(x) | |
| x = self.encoder(x) | |
| enc = self.quant_conv(x) | |
| return enc | |
| def encode( | |
| self, x: torch.Tensor, opt_tiling: bool = True, return_dict: bool = True | |
| ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
| r""" | |
| Encode a batch of images into latents. | |
| Args: | |
| x (`torch.Tensor`): Input batch of images. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] | |
| instead of a plain tuple. | |
| Returns: | |
| The latent representations of the encoded videos. If `return_dict` is True, a | |
| [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, | |
| otherwise a plain `tuple` is returned. | |
| """ | |
| if opt_tiling: | |
| tile_size, tile_stride = self.get_enc_optimal_tiling(x.shape) | |
| else: | |
| b, _, f, h, w = x.shape | |
| tile_size, tile_stride = (b, f, h, w), (f, h, w) | |
| if tile_size != self.tile_size: | |
| self.tile_size = tile_size | |
| self.apply_tiling(tile_size, tile_stride) | |
| h = self._encode(x) | |
| posterior = DiagonalGaussianDistribution(h) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def _decode( | |
| self, z: torch.Tensor, return_dict: bool = True | |
| ) -> Union[DecoderOutput, torch.Tensor]: | |
| _, _, num_frames, height, width = z.shape | |
| tile_latent_min_height = ( | |
| self.tile_sample_min_height // self.spatial_compression_ratio | |
| ) | |
| tile_latent_min_width = ( | |
| self.tile_sample_stride_width // self.spatial_compression_ratio | |
| ) | |
| tile_latent_min_num_frames = ( | |
| self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
| ) | |
| if self.use_framewise_decoding and num_frames > ( | |
| tile_latent_min_num_frames + 1 | |
| ): | |
| return self._temporal_tiled_decode(z, return_dict=return_dict) | |
| if self.use_tiling and ( | |
| width > tile_latent_min_width or height > tile_latent_min_height | |
| ): | |
| return self.tiled_decode(z, return_dict=return_dict) | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def decode( | |
| self, z: torch.Tensor, return_dict: bool = True | |
| ) -> Union[DecoderOutput, torch.Tensor]: | |
| r""" | |
| Decode a batch of images. | |
| Args: | |
| z (`torch.Tensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, | |
| otherwise a plain `tuple` is returned. | |
| """ | |
| tile_size, tile_stride = self.get_dec_optimal_tiling(z.shape) | |
| if tile_size != self.tile_size: | |
| self.tile_size = tile_size | |
| self.apply_tiling(tile_size, tile_stride) | |
| decoded = self._decode(z).sample | |
| if not return_dict: | |
| return (decoded,) | |
| return DecoderOutput(sample=decoded) | |
| def blend_v( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) | |
| for y in range(blend_extent): | |
| b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * ( | |
| 1 - y / blend_extent | |
| ) + b[:, :, :, y, :] * (y / blend_extent) | |
| return b | |
| def blend_h( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * ( | |
| 1 - x / blend_extent | |
| ) + b[:, :, :, :, x] * (x / blend_extent) | |
| return b | |
| def blend_t( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[-3], b.shape[-3], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * ( | |
| 1 - x / blend_extent | |
| ) + b[:, :, x, :, :] * (x / blend_extent) | |
| return b | |
| def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: | |
| r"""Encode a batch of images using a tiled encoder. | |
| Args: | |
| x (`torch.Tensor`): Input batch of videos. | |
| Returns: | |
| `torch.Tensor`: | |
| The latent representation of the encoded videos. | |
| """ | |
| _, _, _, height, width = x.shape | |
| latent_height = height // self.spatial_compression_ratio | |
| latent_width = width // self.spatial_compression_ratio | |
| tile_latent_min_height = ( | |
| self.tile_sample_min_height // self.spatial_compression_ratio | |
| ) | |
| tile_latent_min_width = ( | |
| self.tile_sample_min_width // self.spatial_compression_ratio | |
| ) | |
| tile_latent_stride_height = ( | |
| self.tile_sample_stride_height // self.spatial_compression_ratio | |
| ) | |
| tile_latent_stride_width = ( | |
| self.tile_sample_stride_width // self.spatial_compression_ratio | |
| ) | |
| blend_height = tile_latent_min_height - tile_latent_stride_height | |
| blend_width = tile_latent_min_width - tile_latent_stride_width | |
| rows = [] | |
| for i in range( | |
| 0, height - self.tile_sample_min_height + 1, self.tile_sample_stride_height | |
| ): | |
| row = [] | |
| for j in range( | |
| 0, width - self.tile_sample_min_width + 1, self.tile_sample_stride_width | |
| ): | |
| tile = x[ | |
| :, | |
| :, | |
| :, | |
| i : i + self.tile_sample_min_height, | |
| j : j + self.tile_sample_min_width, | |
| ] | |
| tile = self.encoder(tile).clone() | |
| tile = self.quant_conv(tile) | |
| row.append(tile) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_width) | |
| height_lim = ( | |
| tile_latent_min_height | |
| if i == len(rows) - 1 | |
| else tile_latent_stride_height | |
| ) | |
| width_lim = ( | |
| tile_latent_min_width | |
| if j == len(row) - 1 | |
| else tile_latent_stride_width | |
| ) | |
| result_row.append(tile[:, :, :, :height_lim, :width_lim]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width] | |
| return enc | |
| def tiled_decode( | |
| self, z: torch.Tensor, return_dict: bool = True | |
| ) -> Union[DecoderOutput, torch.Tensor]: | |
| r""" | |
| Decode a batch of images using a tiled decoder. | |
| Args: | |
| z (`torch.Tensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, | |
| otherwise a plain `tuple` is returned. | |
| """ | |
| _, _, _, height, width = z.shape | |
| sample_height = height * self.spatial_compression_ratio | |
| sample_width = width * self.spatial_compression_ratio | |
| tile_latent_min_height = ( | |
| self.tile_sample_min_height // self.spatial_compression_ratio | |
| ) | |
| tile_latent_min_width = ( | |
| self.tile_sample_min_width // self.spatial_compression_ratio | |
| ) | |
| tile_latent_stride_height = ( | |
| self.tile_sample_stride_height // self.spatial_compression_ratio | |
| ) | |
| tile_latent_stride_width = ( | |
| self.tile_sample_stride_width // self.spatial_compression_ratio | |
| ) | |
| blend_height = self.tile_sample_min_height - self.tile_sample_stride_height | |
| blend_width = self.tile_sample_min_width - self.tile_sample_stride_width | |
| rows = [] | |
| for i in range( | |
| 0, height - tile_latent_min_height + 1, tile_latent_stride_height | |
| ): | |
| row = [] | |
| for j in range( | |
| 0, width - tile_latent_min_width + 1, tile_latent_stride_width | |
| ): | |
| tile = z[ | |
| :, | |
| :, | |
| :, | |
| i : i + tile_latent_min_height, | |
| j : j + tile_latent_min_width, | |
| ] | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile).clone() | |
| row.append(decoded) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_width) | |
| height_lim = ( | |
| self.tile_sample_min_height | |
| if i == len(rows) - 1 | |
| else self.tile_sample_stride_height | |
| ) | |
| width_lim = ( | |
| self.tile_sample_min_width | |
| if j == len(row) - 1 | |
| else self.tile_sample_stride_width | |
| ) | |
| result_row.append(tile[:, :, :, :height_lim, :width_lim]) | |
| result_rows.append(torch.cat(result_row, dim=-1)) | |
| dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width] | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: | |
| _, _, num_frames, height, width = x.shape | |
| latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1 | |
| tile_latent_min_num_frames = ( | |
| self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
| ) | |
| tile_latent_stride_num_frames = ( | |
| self.tile_sample_stride_num_frames // self.temporal_compression_ratio | |
| ) | |
| blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames | |
| row = [] | |
| # for i in range(0, num_frames, self.tile_sample_stride_num_frames): | |
| for i in range( | |
| 0, | |
| num_frames - self.tile_sample_min_num_frames + 1, | |
| self.tile_sample_stride_num_frames, | |
| ): | |
| tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :] | |
| if self.use_tiling and ( | |
| height > self.tile_sample_min_height | |
| or width > self.tile_sample_min_width | |
| ): | |
| tile = self.tiled_encode(tile) | |
| else: | |
| tile = self.encoder(tile).clone() | |
| tile = self.quant_conv(tile) | |
| if i > 0: | |
| tile = tile[:, :, 1:, :, :] | |
| row.append(tile) | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_t(row[i - 1], tile, blend_num_frames) | |
| t_lim = ( | |
| tile_latent_min_num_frames | |
| if i == len(row) - 1 | |
| else tile_latent_stride_num_frames | |
| ) | |
| result_row.append(tile[:, :, :t_lim, :, :]) | |
| else: | |
| result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :]) | |
| enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames] | |
| return enc | |
| def _temporal_tiled_decode( | |
| self, z: torch.Tensor, return_dict: bool = True | |
| ) -> Union[DecoderOutput, torch.Tensor]: | |
| _, _, num_frames, _, _ = z.shape | |
| num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 | |
| tile_latent_min_height = ( | |
| self.tile_sample_min_height // self.spatial_compression_ratio | |
| ) | |
| tile_latent_min_width = ( | |
| self.tile_sample_min_width // self.spatial_compression_ratio | |
| ) | |
| tile_latent_min_num_frames = ( | |
| self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
| ) | |
| tile_latent_stride_num_frames = ( | |
| self.tile_sample_stride_num_frames // self.temporal_compression_ratio | |
| ) | |
| blend_num_frames = ( | |
| self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames | |
| ) | |
| row = [] | |
| for i in range( | |
| 0, | |
| num_frames - tile_latent_min_num_frames + 1, | |
| tile_latent_stride_num_frames, | |
| ): | |
| tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :] | |
| if self.use_tiling and ( | |
| tile.shape[-1] > tile_latent_min_width | |
| or tile.shape[-2] > tile_latent_min_height | |
| ): | |
| decoded = self.tiled_decode(tile, return_dict=True).sample | |
| else: | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile).clone() | |
| if i > 0: | |
| decoded = decoded[:, :, 1:, :, :] | |
| row.append(decoded) | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_t(row[i - 1], tile, blend_num_frames) | |
| t_lim = ( | |
| self.tile_sample_min_num_frames | |
| if i == len(row) - 1 | |
| else self.tile_sample_stride_num_frames | |
| ) | |
| result_row.append(tile[:, :, :t_lim, :, :]) | |
| else: | |
| result_row.append( | |
| tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :] | |
| ) | |
| dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames] | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| sample_posterior: bool = False, | |
| return_dict: bool = True, | |
| generator: Optional[torch.Generator] = None, | |
| ) -> Union[DecoderOutput, torch.Tensor]: | |
| r""" | |
| Args: | |
| sample (`torch.Tensor`): Input sample. | |
| sample_posterior (`bool`, *optional*, defaults to `False`): | |
| Whether to sample from the posterior. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
| """ | |
| x = sample | |
| posterior = self.encode(x).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample(generator=generator) | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z, return_dict=return_dict) | |
| return dec | |
| def apply_tiling( | |
| self, tile: Tuple[int, int, int, int], stride: Tuple[int, int, int] | |
| ): | |
| """Applies tiling.""" | |
| _, ft, ht, wt = tile | |
| fs, hs, ws = stride | |
| self.use_tiling = True | |
| self.tile_sample_min_num_frames = ft - 1 | |
| self.tile_sample_stride_num_frames = fs | |
| self.tile_sample_min_height = ht | |
| self.tile_sample_min_width = wt | |
| self.tile_sample_stride_height = hs | |
| self.tile_sample_stride_width = ws | |
| def get_enc_optimal_tiling( | |
| self, shape: List[int] | |
| ) -> Tuple[Tuple[int, int, int, int], Tuple[int, int, int]]: | |
| """Returns optimal tiling for given shape.""" | |
| _, _, num_frames, height, width = shape | |
| if (sqrt(height * width) < 450) and (num_frames <= 97): | |
| ft, fs = num_frames, num_frames | |
| else: | |
| ft = OPT_TEMPORAL_TILING[num_frames][0] | |
| fs = OPT_TEMPORAL_TILING[num_frames][1] | |
| if sqrt(height * width) > 500: | |
| ht = OPT_SPATIAL_TILING[height][0] | |
| hs = OPT_SPATIAL_TILING[height][1] | |
| wt = OPT_SPATIAL_TILING[width][0] | |
| ws = OPT_SPATIAL_TILING[width][1] | |
| else: | |
| ht, hs, wt, ws = height, height, width, width | |
| return (1, ft, ht, wt), (fs, hs, ws) | |
| def get_dec_optimal_tiling( | |
| self, shape: List[int] | |
| ) -> Tuple[Tuple[int, int, int, int], Tuple[int, int, int]]: | |
| """Returns optimal tiling for given shape.""" | |
| b, _, f, h, w = shape | |
| enc_inp_shape = [b, 3, 4 * (f - 1) + 1, 8 * h, 8 * w] | |
| return self.get_enc_optimal_tiling(enc_inp_shape) | |
| def build_vae(conf): | |
| if conf.name == "hunyuan": | |
| return AutoencoderKLHunyuanVideo.from_pretrained( | |
| conf.checkpoint_path, subfolder="vae", torch_dtype=torch.float16 | |
| ) | |
| else: | |
| assert False, f"unknown vae name {conf.name}" | |