Spaces:
Paused
Paused
Create app_torch.py
Browse files- app_torch.py +268 -0
app_torch.py
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import subprocess
|
| 5 |
+
import importlib
|
| 6 |
+
import site
|
| 7 |
+
import warnings
|
| 8 |
+
import logging
|
| 9 |
+
import time
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import torch
|
| 14 |
+
from huggingface_hub import hf_hub_download
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import spaces
|
| 17 |
+
|
| 18 |
+
# ---------------------------
|
| 19 |
+
# Environment flags (reduce fusion/compilation) β set early
|
| 20 |
+
# ---------------------------
|
| 21 |
+
# These help avoid some torchinductor/flash-attn fusion issues that provoke guard errors.
|
| 22 |
+
os.environ.setdefault("TORCHINDUCTOR_DISABLE", "1")
|
| 23 |
+
os.environ.setdefault("TORCHINDUCTOR_FUSION", "0")
|
| 24 |
+
os.environ.setdefault("USE_FLASH_ATTENTION", "0")
|
| 25 |
+
# Some environments check this; safe to set
|
| 26 |
+
os.environ.setdefault("XLA_IGNORE_ENV_VARS", "1")
|
| 27 |
+
|
| 28 |
+
# ---------------------------
|
| 29 |
+
# FlashAttention install (best-effort)
|
| 30 |
+
# ---------------------------
|
| 31 |
+
def try_install_flash_attention():
|
| 32 |
+
try:
|
| 33 |
+
print("Attempting to download and install FlashAttention wheel...")
|
| 34 |
+
wheel = hf_hub_download(
|
| 35 |
+
repo_id="rahul7star/flash-attn-3",
|
| 36 |
+
repo_type="model",
|
| 37 |
+
filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
|
| 38 |
+
)
|
| 39 |
+
subprocess.run([sys.executable, "-m", "pip", "install", wheel], check=True)
|
| 40 |
+
# refresh site-packages
|
| 41 |
+
site.addsitedir(site.getsitepackages()[0])
|
| 42 |
+
importlib.invalidate_caches()
|
| 43 |
+
print("β
FlashAttention installed.")
|
| 44 |
+
return True
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"β οΈ FlashAttention install failed: {e}")
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
# ---------------------------
|
| 50 |
+
# Torch logging / warnings
|
| 51 |
+
# ---------------------------
|
| 52 |
+
warnings.filterwarnings("ignore")
|
| 53 |
+
logging.getLogger("torch").setLevel(logging.ERROR)
|
| 54 |
+
# reduce torch verbose logging
|
| 55 |
+
try:
|
| 56 |
+
torch._logging.set_logs(
|
| 57 |
+
dynamo=logging.ERROR,
|
| 58 |
+
dynamic=logging.ERROR,
|
| 59 |
+
aot=logging.ERROR,
|
| 60 |
+
inductor=logging.ERROR,
|
| 61 |
+
guards=False,
|
| 62 |
+
recompiles=False
|
| 63 |
+
)
|
| 64 |
+
except Exception:
|
| 65 |
+
pass
|
| 66 |
+
|
| 67 |
+
# Make Dynamo tolerant initially (we'll disable if it fails)
|
| 68 |
+
try:
|
| 69 |
+
import torch._dynamo as _dynamo
|
| 70 |
+
_dynamo.config.suppress_errors = True
|
| 71 |
+
_dynamo.config.cache_size_limit = 0 # avoid large guard caches
|
| 72 |
+
except Exception:
|
| 73 |
+
_dynamo = None
|
| 74 |
+
|
| 75 |
+
# ---------------------------
|
| 76 |
+
# Download models if needed
|
| 77 |
+
# ---------------------------
|
| 78 |
+
def ensure_models_downloaded(marker_file=".models_ready"):
|
| 79 |
+
marker = Path(marker_file)
|
| 80 |
+
if marker.exists():
|
| 81 |
+
print("Models already downloaded (marker found).")
|
| 82 |
+
return True
|
| 83 |
+
if not Path("download_models.py").exists():
|
| 84 |
+
print("download_models.py not found in repo.")
|
| 85 |
+
return False
|
| 86 |
+
try:
|
| 87 |
+
print("Running download_models.py ...")
|
| 88 |
+
subprocess.run([sys.executable, "download_models.py"], check=True)
|
| 89 |
+
marker.write_text("ok")
|
| 90 |
+
print("Models download finished.")
|
| 91 |
+
return True
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print("Model download failed:", e)
|
| 94 |
+
return False
|
| 95 |
+
|
| 96 |
+
# ---------------------------
|
| 97 |
+
# Load Kandinsky pipeline with smart Dynamo handling
|
| 98 |
+
# ---------------------------
|
| 99 |
+
def load_pipeline(conf_path="./configs/config_5s_sft.yaml", move_to_cuda_if_available=True):
|
| 100 |
+
"""
|
| 101 |
+
Attempt to load the pipeline normally. If Dynamo/guard errors are raised,
|
| 102 |
+
disable torch._dynamo and reload in eager mode.
|
| 103 |
+
Returns pipeline or raises.
|
| 104 |
+
"""
|
| 105 |
+
from kandinsky import get_T2V_pipeline # import inside function to respect env changes
|
| 106 |
+
|
| 107 |
+
def _do_load():
|
| 108 |
+
print("Loading pipeline with device_map pointing to cuda if available...")
|
| 109 |
+
device_map = None
|
| 110 |
+
if torch.cuda.is_available():
|
| 111 |
+
# let the pipeline place modules onto CUDA by device_map
|
| 112 |
+
device_map = {"dit": "cuda:0", "vae": "cuda:0", "text_embedder": "cuda:0"}
|
| 113 |
+
else:
|
| 114 |
+
device_map = "cpu"
|
| 115 |
+
pipe = get_T2V_pipeline(device_map=device_map, conf_path=conf_path, offload=False, magcache=False)
|
| 116 |
+
# If pipeline has .to and CUDA is available, move it
|
| 117 |
+
if move_to_cuda_if_available and torch.cuda.is_available() and hasattr(pipe, "to"):
|
| 118 |
+
try:
|
| 119 |
+
pipe.to("cuda")
|
| 120 |
+
except Exception as e:
|
| 121 |
+
# fallback: ignore and continue (some pipelines handle own device_map)
|
| 122 |
+
print("Warning while moving pipeline to CUDA:", e)
|
| 123 |
+
return pipe
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# Try normal load first (Dynamo may be enabled but we've suppressed errors)
|
| 127 |
+
pipe = _do_load()
|
| 128 |
+
print("Pipeline loaded successfully (initial try).")
|
| 129 |
+
return pipe
|
| 130 |
+
except Exception as e:
|
| 131 |
+
# Detect Dynamo/guard-related signatures and fallback
|
| 132 |
+
msg = str(e).lower()
|
| 133 |
+
if "dynamo" in msg or "guard" in msg or "attributeerror" in msg or "caught" in msg:
|
| 134 |
+
print("β οΈ Dynamo/guard-related error detected while loading pipeline:", e)
|
| 135 |
+
# Disable torch dynamo and try again
|
| 136 |
+
try:
|
| 137 |
+
if _dynamo is not None:
|
| 138 |
+
print("Disabling torch._dynamo and retrying load in eager mode...")
|
| 139 |
+
_dynamo.disable()
|
| 140 |
+
else:
|
| 141 |
+
print("torch._dynamo not available; proceeding to retry load.")
|
| 142 |
+
except Exception as ex_disable:
|
| 143 |
+
print("Error disabling torch._dynamo:", ex_disable)
|
| 144 |
+
# Retry load
|
| 145 |
+
try:
|
| 146 |
+
pipe = _do_load()
|
| 147 |
+
print("Pipeline loaded successfully after disabling torch._dynamo.")
|
| 148 |
+
return pipe
|
| 149 |
+
except Exception as e2:
|
| 150 |
+
print("Failed to load pipeline even after disabling torch._dynamo:", e2)
|
| 151 |
+
raise
|
| 152 |
+
else:
|
| 153 |
+
# Not obviously a Dynamo issue β re-raise
|
| 154 |
+
raise
|
| 155 |
+
|
| 156 |
+
# ---------------------------
|
| 157 |
+
# Startup sequence
|
| 158 |
+
# ---------------------------
|
| 159 |
+
print("=== startup: installing optional FlashAttention (best-effort) ===")
|
| 160 |
+
try_install_flash_attention()
|
| 161 |
+
|
| 162 |
+
print("=== startup: ensuring models ===")
|
| 163 |
+
if not ensure_models_downloaded():
|
| 164 |
+
print("Models not available; app may fail at inference. Proceeding anyway.")
|
| 165 |
+
|
| 166 |
+
print("=== startup: loading pipeline (smart) ===")
|
| 167 |
+
pipe = None
|
| 168 |
+
try:
|
| 169 |
+
pipe = load_pipeline(conf_path="./configs/config_5s_sft.yaml", move_to_cuda_if_available=True)
|
| 170 |
+
except Exception as e:
|
| 171 |
+
print("Pipeline load ultimately failed:", e)
|
| 172 |
+
pipe = None
|
| 173 |
+
|
| 174 |
+
# ---------------------------
|
| 175 |
+
# Helper: ensure pipeline is on CUDA at generation time
|
| 176 |
+
# ---------------------------
|
| 177 |
+
def ensure_pipe_on_cuda(pipeline):
|
| 178 |
+
if pipeline is None:
|
| 179 |
+
raise RuntimeError("Pipeline is None")
|
| 180 |
+
# If CUDA not available, raise early
|
| 181 |
+
if not torch.cuda.is_available():
|
| 182 |
+
raise RuntimeError("CUDA not available on this machine")
|
| 183 |
+
# If pipeline supports .to, move it
|
| 184 |
+
if hasattr(pipeline, "to"):
|
| 185 |
+
try:
|
| 186 |
+
pipeline.to("cuda")
|
| 187 |
+
except Exception as e:
|
| 188 |
+
# Some pipelines use device_map placement β ignore move failure
|
| 189 |
+
print("Warning: pipeline.to('cuda') raised:", e)
|
| 190 |
+
|
| 191 |
+
# ---------------------------
|
| 192 |
+
# Generation function (runs on GPU when used)
|
| 193 |
+
# ---------------------------
|
| 194 |
+
@spaces.GPU(duration=60)
|
| 195 |
+
def generate_output(prompt, mode, duration, width, height, steps, guidance, scheduler):
|
| 196 |
+
"""
|
| 197 |
+
This generation function assumes the pipeline is already loaded (pipe variable).
|
| 198 |
+
It will raise a helpful error if the pipeline wasn't loaded at startup.
|
| 199 |
+
"""
|
| 200 |
+
if pipe is None:
|
| 201 |
+
return None, "β Pipeline not initialized at startup. Check logs."
|
| 202 |
+
|
| 203 |
+
# Ensure CUDA available and pipeline on CUDA
|
| 204 |
+
if not torch.cuda.is_available():
|
| 205 |
+
return None, "β CUDA not available on this host."
|
| 206 |
+
|
| 207 |
+
try:
|
| 208 |
+
# If dynamo is still enabled and we suspect it can cause trouble during forward,
|
| 209 |
+
# run inference inside a context where dynamo is disabled to be safe.
|
| 210 |
+
try:
|
| 211 |
+
if _dynamo is not None:
|
| 212 |
+
_dynamo.disable()
|
| 213 |
+
except Exception:
|
| 214 |
+
pass
|
| 215 |
+
|
| 216 |
+
out_name = f"/tmp/{int(time.time())}_{prompt.replace(' ', '_')}.{'mp4' if mode == 'video' else 'png'}"
|
| 217 |
+
|
| 218 |
+
if mode == "image":
|
| 219 |
+
pipe(prompt, time_length=0, width=width, height=height, save_path=out_name)
|
| 220 |
+
return out_name, f"β
Image saved to {out_name}"
|
| 221 |
+
|
| 222 |
+
# video path
|
| 223 |
+
pipe(prompt,
|
| 224 |
+
time_length=duration,
|
| 225 |
+
width=width,
|
| 226 |
+
height=height,
|
| 227 |
+
num_steps=steps if steps else None,
|
| 228 |
+
guidance_weight=guidance if guidance else None,
|
| 229 |
+
scheduler_scale=scheduler if scheduler else None,
|
| 230 |
+
save_path=out_name)
|
| 231 |
+
return out_name, f"β
Video saved to {out_name}"
|
| 232 |
+
|
| 233 |
+
except torch.cuda.OutOfMemoryError:
|
| 234 |
+
return None, "β οΈ CUDA OOM β try reducing resolution/duration/steps."
|
| 235 |
+
except Exception as e:
|
| 236 |
+
return None, f"β Generation error: {e}"
|
| 237 |
+
|
| 238 |
+
# ---------------------------
|
| 239 |
+
# Gradio UI
|
| 240 |
+
# ---------------------------
|
| 241 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Kandinsky 5.0 T2V (robust load)") as demo:
|
| 242 |
+
gr.Markdown("## Kandinsky 5.0 β Robust pipeline loader (smart Dynamo fallback)")
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
with gr.Column(scale=2):
|
| 246 |
+
mode = gr.Radio(["video", "image"], value="video", label="Mode")
|
| 247 |
+
prompt = gr.Textbox(label="Prompt", value="A dog in red boots")
|
| 248 |
+
duration = gr.Slider(1, 10, step=1, value=5, label="Duration (s)")
|
| 249 |
+
width = gr.Radio([512, 768], value=768, label="Width")
|
| 250 |
+
height = gr.Radio([512, 768], value=512, label="Height")
|
| 251 |
+
steps = gr.Slider(4, 50, step=1, value=25, label="Sampling Steps")
|
| 252 |
+
guidance = gr.Slider(0.0, 20.0, step=0.5, value=8.0, label="Guidance Weight")
|
| 253 |
+
scheduler = gr.Slider(1.0, 10.0, step=0.5, value=5.0, label="Scheduler Scale")
|
| 254 |
+
btn = gr.Button("Generate", variant="primary")
|
| 255 |
+
|
| 256 |
+
with gr.Column(scale=3):
|
| 257 |
+
out_video = gr.Video(label="Output")
|
| 258 |
+
status = gr.Textbox(label="Status", lines=6)
|
| 259 |
+
|
| 260 |
+
btn.click(fn=generate_output,
|
| 261 |
+
inputs=[prompt, mode, duration, width, height, steps, guidance, scheduler],
|
| 262 |
+
outputs=[out_video, status])
|
| 263 |
+
|
| 264 |
+
# ---------------------------
|
| 265 |
+
# Launch
|
| 266 |
+
# ---------------------------
|
| 267 |
+
if __name__ == "__main__":
|
| 268 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|