import math import torch from torch import nn import torch.nn.functional as F from torch.nn.attention.flex_attention import flex_attention from .utils import get_freqs, nablaT_v2 if torch.cuda.get_device_capability()[0] >= 9: try: from flash_attn import flash_attn_func as FA print("FlashAttention 2 is found") except: FA = None try: from flash_attn_interface import flash_attn_func as FA print("FlashAttention 3 is found") except: FA = FA else: try: from flash_attn import flash_attn_func as FA print("FlashAttention 2 is found") except: FA = None @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True) def sdpa(q, k, v): query = q.transpose(1, 2).contiguous() key = k.transpose(1, 2).contiguous() value = v.transpose(1, 2).contiguous() out = ( F.scaled_dot_product_attention( query, key, value ) .transpose(1, 2) .contiguous() ) return out if FA is None: print("FlashAttention is not found. Using SDPA instead.") FA = sdpa @torch.compile() @torch.autocast(device_type="cuda", dtype=torch.float32) def apply_scale_shift_norm(norm, x, scale, shift): return (norm(x) * (scale + 1.0) + shift).to(torch.bfloat16) @torch.compile() @torch.autocast(device_type="cuda", dtype=torch.float32) def apply_gate_sum(x, out, gate): return (x + gate * out).to(torch.bfloat16) @torch.compile() @torch.autocast(device_type="cuda", enabled=False) def apply_rotary(x, rope): x_ = x.reshape(*x.shape[:-1], -1, 1, 2).to(torch.float32) x_out = (rope * x_).sum(dim=-1) return x_out.reshape(*x.shape).to(torch.bfloat16) class TimeEmbeddings(nn.Module): def __init__(self, model_dim, time_dim, max_period=10000.0): super().__init__() assert model_dim % 2 == 0 self.model_dim = model_dim self.max_period = max_period self.register_buffer( "freqs", get_freqs(model_dim // 2, max_period), persistent=False ) self.in_layer = nn.Linear(model_dim, time_dim, bias=True) self.activation = nn.SiLU() self.out_layer = nn.Linear(time_dim, time_dim, bias=True) @torch.autocast(device_type="cuda", dtype=torch.float32) def forward(self, time): args = torch.outer(time, self.freqs.to(device=time.device)) time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) time_embed = self.out_layer(self.activation(self.in_layer(time_embed))) return time_embed class TextEmbeddings(nn.Module): def __init__(self, text_dim, model_dim): super().__init__() self.in_layer = nn.Linear(text_dim, model_dim, bias=True) self.norm = nn.LayerNorm(model_dim, elementwise_affine=True) def forward(self, text_embed): text_embed = self.in_layer(text_embed) return self.norm(text_embed).type_as(text_embed) class VisualEmbeddings(nn.Module): def __init__(self, visual_dim, model_dim, patch_size): super().__init__() self.patch_size = patch_size self.in_layer = nn.Linear(math.prod(patch_size) * visual_dim, model_dim) def forward(self, x): duration, height, width, dim = x.shape x = ( x.view( duration // self.patch_size[0], self.patch_size[0], height // self.patch_size[1], self.patch_size[1], width // self.patch_size[2], self.patch_size[2], dim, ) .permute(0, 2, 4, 1, 3, 5, 6) .flatten(3, 6) ) return self.in_layer(x) class RoPE1D(nn.Module): def __init__(self, dim, max_pos=1024, max_period=10000.0): super().__init__() self.max_period = max_period self.dim = dim self.max_pos = max_pos freq = get_freqs(dim // 2, max_period) pos = torch.arange(max_pos, dtype=freq.dtype) self.register_buffer(f"args", torch.outer(pos, freq), persistent=False) @torch.autocast(device_type="cuda", enabled=False) def forward(self, pos): args = self.args[pos] cosine = torch.cos(args) sine = torch.sin(args) rope = torch.stack([cosine, -sine, sine, cosine], dim=-1) rope = rope.view(*rope.shape[:-1], 2, 2) return rope.unsqueeze(-4) class RoPE3D(nn.Module): def __init__(self, axes_dims, max_pos=(128, 128, 128), max_period=10000.0): super().__init__() self.axes_dims = axes_dims self.max_pos = max_pos self.max_period = max_period for i, (axes_dim, ax_max_pos) in enumerate(zip(axes_dims, max_pos)): freq = get_freqs(axes_dim // 2, max_period) pos = torch.arange(ax_max_pos, dtype=freq.dtype) self.register_buffer(f"args_{i}", torch.outer(pos, freq), persistent=False) @torch.autocast(device_type="cuda", enabled=False) def forward(self, shape, pos, scale_factor=(1.0, 1.0, 1.0)): duration, height, width = shape args_t = self.args_0[pos[0]] / scale_factor[0] args_h = self.args_1[pos[1]] / scale_factor[1] args_w = self.args_2[pos[2]] / scale_factor[2] args = torch.cat( [ args_t.view(duration, 1, 1, -1).repeat(1, height, width, 1), args_h.view(1, height, 1, -1).repeat(duration, 1, width, 1), args_w.view(1, 1, width, -1).repeat(duration, height, 1, 1), ], dim=-1, ) cosine = torch.cos(args) sine = torch.sin(args) rope = torch.stack([cosine, -sine, sine, cosine], dim=-1) rope = rope.view(*rope.shape[:-1], 2, 2) return rope.unsqueeze(-4) class Modulation(nn.Module): def __init__(self, time_dim, model_dim, num_params): super().__init__() self.activation = nn.SiLU() self.out_layer = nn.Linear(time_dim, num_params * model_dim) self.out_layer.weight.data.zero_() self.out_layer.bias.data.zero_() @torch.compile() @torch.autocast(device_type="cuda", dtype=torch.float32) def forward(self, x): return self.out_layer(self.activation(x)) class MultiheadSelfAttentionEnc(nn.Module): def __init__(self, num_channels, head_dim): super().__init__() assert num_channels % head_dim == 0 self.num_heads = num_channels // head_dim self.to_query = nn.Linear(num_channels, num_channels, bias=True) self.to_key = nn.Linear(num_channels, num_channels, bias=True) self.to_value = nn.Linear(num_channels, num_channels, bias=True) self.query_norm = nn.RMSNorm(head_dim) self.key_norm = nn.RMSNorm(head_dim) self.out_layer = nn.Linear(num_channels, num_channels, bias=True) @torch.compile() def get_qkv(self, x): query = self.to_query(x) key = self.to_key(x) value = self.to_value(x) shape = query.shape[:-1] query = query.reshape(*shape, self.num_heads, -1) key = key.reshape(*shape, self.num_heads, -1) value = value.reshape(*shape, self.num_heads, -1) return query, key, value @torch.compile() def norm_qk(self, q, k): q = self.query_norm(q.float()).type_as(q) k = self.key_norm(k.float()).type_as(k) return q, k @torch.compile() def scaled_dot_product_attention(self, query, key, value): out = FA(q=query.unsqueeze(0), k=key.unsqueeze(0), v=value.unsqueeze(0))[0].flatten(-2, -1) return out @torch.compile() def out_l(self, x): return self.out_layer(x) def forward(self, x, rope): query, key, value = self.get_qkv(x) query, key = self.norm_qk(query, key) query = apply_rotary(query, rope).type_as(query) key = apply_rotary(key, rope).type_as(key) out = self.scaled_dot_product_attention(query, key, value) out = self.out_l(out) return out class MultiheadSelfAttentionDec(nn.Module): def __init__(self, num_channels, head_dim): super().__init__() assert num_channels % head_dim == 0 self.num_heads = num_channels // head_dim self.to_query = nn.Linear(num_channels, num_channels, bias=True) self.to_key = nn.Linear(num_channels, num_channels, bias=True) self.to_value = nn.Linear(num_channels, num_channels, bias=True) self.query_norm = nn.RMSNorm(head_dim) self.key_norm = nn.RMSNorm(head_dim) self.out_layer = nn.Linear(num_channels, num_channels, bias=True) @torch.compile() def get_qkv(self, x): query = self.to_query(x) key = self.to_key(x) value = self.to_value(x) shape = query.shape[:-1] query = query.reshape(*shape, self.num_heads, -1) key = key.reshape(*shape, self.num_heads, -1) value = value.reshape(*shape, self.num_heads, -1) return query, key, value @torch.compile() def norm_qk(self, q, k): q = self.query_norm(q.float()).type_as(q) k = self.key_norm(k.float()).type_as(k) return q, k @torch.compile() def attention(self, query, key, value): out = FA(q=query.unsqueeze(0), k=key.unsqueeze(0), v=value.unsqueeze(0))[0].flatten(-2, -1) return out @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True) def nabla(self, query, key, value, sparse_params=None): query = query.unsqueeze(0).transpose(1, 2).contiguous() key = key.unsqueeze(0).transpose(1, 2).contiguous() value = value.unsqueeze(0).transpose(1, 2).contiguous() block_mask = nablaT_v2( query, key, sparse_params["sta_mask"], thr=sparse_params["P"], ) out = ( flex_attention( query, key, value, block_mask=block_mask ) .transpose(1, 2) .squeeze(0) .contiguous() ) out = out.flatten(-2, -1) return out @torch.compile() def out_l(self, x): return self.out_layer(x) def forward(self, x, rope, sparse_params=None): query, key, value = self.get_qkv(x) query, key = self.norm_qk(query, key) query = apply_rotary(query, rope).type_as(query) key = apply_rotary(key, rope).type_as(key) if sparse_params is not None: out = self.nabla(query, key, value, sparse_params=sparse_params) else: out = self.attention(query, key, value) out = self.out_l(out) return out class MultiheadCrossAttention(nn.Module): def __init__(self, num_channels, head_dim): super().__init__() assert num_channels % head_dim == 0 self.num_heads = num_channels // head_dim self.to_query = nn.Linear(num_channels, num_channels, bias=True) self.to_key = nn.Linear(num_channels, num_channels, bias=True) self.to_value = nn.Linear(num_channels, num_channels, bias=True) self.query_norm = nn.RMSNorm(head_dim) self.key_norm = nn.RMSNorm(head_dim) self.out_layer = nn.Linear(num_channels, num_channels, bias=True) @torch.compile() def get_qkv(self, x, cond): query = self.to_query(x) key = self.to_key(cond) value = self.to_value(cond) shape, cond_shape = query.shape[:-1], key.shape[:-1] query = query.reshape(*shape, self.num_heads, -1) key = key.reshape(*cond_shape, self.num_heads, -1) value = value.reshape(*cond_shape, self.num_heads, -1) return query, key, value @torch.compile() def norm_qk(self, q, k): q = self.query_norm(q.float()).type_as(q) k = self.key_norm(k.float()).type_as(k) return q, k @torch.compile() def attention(self, query, key, value): out = FA(q=query.unsqueeze(0), k=key.unsqueeze(0), v=value.unsqueeze(0))[0].flatten(-2, -1) return out @torch.compile() def out_l(self, x): return self.out_layer(x) def forward(self, x, cond): query, key, value = self.get_qkv(x, cond) query, key = self.norm_qk(query, key) out = self.attention(query, key, value) out = self.out_l(out) return out class FeedForward(nn.Module): def __init__(self, dim, ff_dim): super().__init__() self.in_layer = nn.Linear(dim, ff_dim, bias=False) self.activation = nn.GELU() self.out_layer = nn.Linear(ff_dim, dim, bias=False) @torch.compile() def forward(self, x): return self.out_layer(self.activation(self.in_layer(x))) class OutLayer(nn.Module): def __init__(self, model_dim, time_dim, visual_dim, patch_size): super().__init__() self.patch_size = patch_size self.modulation = Modulation(time_dim, model_dim, 2) self.norm = nn.LayerNorm(model_dim, elementwise_affine=False) self.out_layer = nn.Linear( model_dim, math.prod(patch_size) * visual_dim, bias=True ) def forward(self, visual_embed, text_embed, time_embed): shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1) visual_embed = apply_scale_shift_norm( self.norm, visual_embed, scale[:, None, None], shift[:, None, None], ).type_as(visual_embed) x = self.out_layer(visual_embed) duration, height, width, _ = x.shape x = ( x.view( duration, height, width, -1, self.patch_size[0], self.patch_size[1], self.patch_size[2], ) .permute(0, 4, 1, 5, 2, 6, 3) .flatten(0, 1) .flatten(1, 2) .flatten(2, 3) ) return x