File size: 19,255 Bytes
abb49c0
2d9a6f9
abb49c0
 
b991f7f
56c0d97
683f192
 
abb49c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a17306
abb49c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683f192
 
3a03985
 
 
b95275b
3a03985
 
 
 
abb49c0
 
 
 
683f192
abb49c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683f192
 
abb49c0
 
 
0ab8ba2
 
 
 
 
 
 
 
abb49c0
 
 
56c0d97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d9f075
 
 
 
 
 
b95275b
 
4d9f075
 
 
 
c727d79
4d9f075
cdc781d
b95275b
4d9f075
 
 
b95275b
4d9f075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95275b
 
743929c
 
 
b95275b
743929c
 
 
 
 
 
 
 
 
 
 
4d9f075
 
 
 
743929c
4e07d6b
 
4d9f075
743929c
 
cdc781d
4d9f075
 
 
 
 
9aca42f
4d9f075
 
 
9aca42f
4d9f075
 
 
9aca42f
4d9f075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743929c
bf8d717
 
 
b95275b
f498d85
bf8d717
 
78244e7
bf8d717
 
 
 
 
 
 
b95275b
 
 
e977193
b95275b
bf8d717
 
b95275b
bf8d717
 
4d9f075
12d3925
abb49c0
 
fd56559
b95275b
f498d85
fd56559
 
 
 
 
 
 
 
dde723b
abb49c0
4d9f075
 
 
 
b95275b
 
 
4d9f075
b95275b
4d9f075
b95275b
 
4d9f075
 
 
 
b95275b
 
4d9f075
 
b95275b
4d9f075
 
b95275b
4d9f075
 
 
 
 
b95275b
 
 
 
4d9f075
b95275b
 
 
 
 
 
 
 
 
 
 
 
 
 
abb49c0
b95275b
4d9f075
9aca42f
b95275b
abb49c0
683f192
 
 
 
 
 
 
 
 
 
abb49c0
ca698bb
 
 
bf8d717
ca698bb
 
ccee409
 
 
ca698bb
683f192
 
 
ca698bb
8828f95
ca698bb
 
 
 
490cabd
4257e1b
b95275b
ca698bb
c727d79
b95275b
abb49c0
56c0d97
ca698bb
abb49c0
585777e
17b74df
b95275b
 
17b74df
 
 
 
1ca0b58
a86b0c1
17b74df
 
 
 
 
1ca0b58
91a8229
ca698bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585777e
ca698bb
 
 
 
a86b0c1
de40855
c727d79
de40855
a86b0c1
 
d6489d1
 
de40855
c727d79
a86b0c1
 
 
de40855
ca698bb
585777e
c727d79
aac0050
ca698bb
 
 
ef19c14
c727d79
b95275b
ca698bb
 
 
585777e
c727d79
b95275b
ca698bb
abb49c0
585777e
ef19c14
 
c727d79
ef19c14
b95275b
 
fd56559
b95275b
ca698bb
 
 
 
fd56559
abb49c0
743929c
b95275b
abb49c0
 
 
 
683f192
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import spaces
from huggingface_hub import snapshot_download, hf_hub_download
import os
import subprocess
import importlib, site
from PIL import Image
import uuid
import shutil

# Re-discover all .pth/.egg-link files
for sitedir in site.getsitepackages():
    site.addsitedir(sitedir)

# Clear caches so importlib will pick up new modules
importlib.invalidate_caches()

def sh(cmd): subprocess.check_call(cmd, shell=True)

flash_attention_installed = False

try:
    print("Attempting to download and install FlashAttention wheel...")
    flash_attention_wheel = hf_hub_download(
            repo_id="rahul7star/flash-attn-3",
            repo_type="model",
            filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
        )

    sh(f"pip install {flash_attention_wheel}")

    # tell Python to re-scan site-packages now that the egg-link exists
    import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()

    flash_attention_installed = True
    print("FlashAttention installed successfully.")

except Exception as e:
    print(f"⚠️ Could not install FlashAttention: {e}")
    print("Continuing without FlashAttention...")

import torch
print(f"Torch version: {torch.__version__}")
print(f"FlashAttention available: {flash_attention_installed}")

os.environ["PROCESSED_RESULTS"] = f"{os.getcwd()}/processed_results"

import gradio as gr
import argparse
from ovi.ovi_fusion_engine import OviFusionEngine, DEFAULT_CONFIG
from diffusers import DiffusionPipeline
import tempfile
from ovi.utils.io_utils import save_video
from ovi.utils.processing_utils import clean_text, scale_hw_to_area_divisible

# ----------------------------
# Parse CLI Args
# ----------------------------
parser = argparse.ArgumentParser(description="Ovi Joint Video + Audio Gradio Demo")

parser.add_argument(
    "--cpu_offload",
    action="store_true",
    help="Enable CPU offload for both OviFusionEngine and FluxPipeline"
)
args = parser.parse_args()

ckpt_dir = "./ckpts"

# Wan2.2
wan_dir = os.path.join(ckpt_dir, "Wan2.2-TI2V-5B")
snapshot_download(
    repo_id="Wan-AI/Wan2.2-TI2V-5B",
    local_dir=wan_dir,
    allow_patterns=[
        "google/*",
        "models_t5_umt5-xxl-enc-bf16.pth",
        "Wan2.2_VAE.pth"
    ]
)

# MMAudio
mm_audio_dir = os.path.join(ckpt_dir, "MMAudio")
snapshot_download(
    repo_id="hkchengrex/MMAudio",
    local_dir=mm_audio_dir,
    allow_patterns=[
        "ext_weights/best_netG.pt",
        "ext_weights/v1-16.pth"
    ]
)

ovi_dir = os.path.join(ckpt_dir, "Ovi")
snapshot_download(
    repo_id="chetwinlow1/Ovi",
    local_dir=ovi_dir,
    allow_patterns=[
        "model.safetensors"
    ]
)

# Initialize OviFusionEngine
enable_cpu_offload = args.cpu_offload
print(f"loading model...")
DEFAULT_CONFIG['cpu_offload'] = enable_cpu_offload # always use cpu offload if image generation is enabled
DEFAULT_CONFIG['mode'] = "t2v"  # hardcoded since it is always cpu offloaded
ovi_engine = OviFusionEngine()

try:
    flux_model = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", torch_dtype=torch.bfloat16)
    image_example = None
except Exception as e:
    flux_model = None
    image_example = "example_prompts/pngs/8.png"
    
print("loaded model")


def resize_for_model(image_path):
    # Open image
    img = Image.open(image_path)
    w, h = img.size
    aspect_ratio = w / h
    
    # Decide target size based on aspect ratio
    if aspect_ratio > 1.5:  # wide image
        target_size = (992, 512)
    elif aspect_ratio < 0.66:  # tall image
        target_size = (512, 992)
    else:  # roughly square
        target_size = (512, 512)

    # Resize while preserving aspect ratio, then pad
    img.thumbnail(target_size, Image.Resampling.LANCZOS)

    # Create a new image with target size and paste centered
    new_img = Image.new("RGB", target_size, (0, 0, 0))
    new_img.paste(
        img,
        ((target_size[0] - img.size[0]) // 2,
         (target_size[1] - img.size[1]) // 2)
    )
    return new_img, target_size


def _ensure_output_dir(session_id):
    output_dir = os.path.join(os.environ["PROCESSED_RESULTS"], session_id)
    os.makedirs(output_dir, exist_ok=True)
    return output_dir

@spaces.GPU()
def generate_image(text_prompt, session_id, image_height = 1024, image_width = 1024):
    """
    Generates an image from text_prompt using flux_model if available.
    Always returns a filepath (string) or raises a gr.Error on failure.
    """
    print("image generation used")
    text_prompt = clean_text(text_prompt or "")
    print(text_prompt)

    # If flux_model isn't loaded, fall back to example image (if available)
    output_dir = _ensure_output_dir(session_id)
    output_path = os.path.join(output_dir, "generate_image.png")

    if flux_model is None:
        # fallback to example image if provided
        if image_example and os.path.exists(image_example):
            # copy example into session folder so downstream can always rely on a path under processed_results
            shutil.copy(image_example, output_path)
            print(f"Flux model not available — using example image {image_example}")
            return output_path
        else:
            raise gr.Error("Image generation model not available and no example image found.")

    # ensure requested dims are divisible/compatible
    image_h, image_w = scale_hw_to_area_divisible(int(image_height), int(image_width), area=1024 * 1024)

    try:
        # move model to GPU, generate, then move model back to CPU
        flux_model.to("cuda")
        gen = flux_model(
            text_prompt,
            height=image_h,
            width=image_w,
            num_inference_steps = 28,
            guidance_scale=4.5,
            generator=torch.Generator(device="cuda").manual_seed(1234)
        )
        image = gen.images[0]
        image.save(output_path)
        print(f"Saved generated image to {output_path}")
        return output_path
    except Exception as e:
        # provide helpful error message and fallback to example if present
        print(f"⚠️ generate_image failed: {e}")
        if image_example and os.path.exists(image_example):
            shutil.copy(image_example, output_path)
            print(f"Falling back to example image {image_example}")
            return output_path
        raise gr.Error(f"Image generation failed: {e}")
    finally:
        try:
            flux_model.to("cpu")
        except Exception:
            pass


def generate_scene(
    text_prompt,
    sample_steps = 50,
    image = None,
    session_id = None,
    video_seed = 100,
    solver_name = "unipc",
    shift = 5,
    video_guidance_scale = 4,
    audio_guidance_scale = 3,
    slg_layer = 11,
    video_negative_prompt = "",
    audio_negative_prompt = "",
    progress=gr.Progress(track_tqdm=True)
):
    """
    Top-level helper that ensures there's an image (generates one if necessary)
    and then calls generate_video.
    """
    text_prompt_processed = (text_prompt or "").strip()
    if session_id is None:
        session_id = uuid.uuid4().hex

    if not text_prompt_processed:
        raise gr.Error("Please enter a prompt.")
    print(text_prompt)
    # If user did not supply an image (None or empty), try to generate one and use it.
    if not image:
        print("No image provided; attempting to generate one.")
        image = generate_image(text_prompt_processed, session_id)
        print(f"Generated/fallback image path: {image}")

    # If image is a dict-like from Gradio, try to extract file path (defensive)
    if isinstance(image, dict) and "name" in image:
        image = image["name"]

    # final check - ensure file exists
    if not image or not os.path.exists(image):
        raise gr.Error("No usable image available (generation failed and no fallback).")

    print(f"{session_id} is generating scene with {sample_steps} steps (image: {image})")

    return generate_video(
        text_prompt=text_prompt_processed,
        sample_steps=sample_steps,
        image=image,
        session_id=session_id,
        video_seed=video_seed,
        solver_name=solver_name,
        shift=shift,
        video_guidance_scale=video_guidance_scale,
        audio_guidance_scale=audio_guidance_scale,
        slg_layer=slg_layer,
        video_negative_prompt=video_negative_prompt,
        audio_negative_prompt=audio_negative_prompt,
        progress=progress
    )

def get_duration(
    text_prompt,
    sample_steps,
    image,
    session_id,
    video_seed,
    solver_name,
    shift,
    video_guidance_scale,
    audio_guidance_scale,
    slg_layer,
    video_negative_prompt,
    audio_negative_prompt,
    progress,
):
    image_generation_s = 0

    if not image:
        image_generation_s = 40

    warmup = 20

    return int(sample_steps * 3 + warmup + image_generation_s)
    


@spaces.GPU(duration=get_duration)
def generate_video(
    text_prompt,
    sample_steps = 50,
    image = None,
    session_id = None,
    video_seed = 100,
    solver_name = "unipc",
    shift = 5,
    video_guidance_scale = 4,
    audio_guidance_scale = 3,
    slg_layer = 11,
    video_negative_prompt = "",
    audio_negative_prompt = "",
    progress=gr.Progress(track_tqdm=True)
):
    """
    Generates a video using ovi_engine given a guaranteed image path (string).
    """
    print("generate_video called")
    if session_id is None:
        session_id = uuid.uuid4().hex

    # If image is not provided for any reason, try generating one now.
    if not image:
        print("No image passed to generate_video; generating now...")
        image = generate_image(text_prompt, session_id)

    # If Gradio passed a dict or other structure, extract file path
    if isinstance(image, dict) and "name" in image:
        image_path = image["name"]
    else:
        image_path = image

    if not image_path or not os.path.exists(image_path):
        raise gr.Error("Image path is missing or the file does not exist. Cannot generate video.")

    output_dir = _ensure_output_dir(session_id)
    output_path = os.path.join(output_dir, "generated_video.mp4")

    # Resize/pad and get the target dims for the model
    try:
        _, target_size = resize_for_model(image_path)
    except Exception as e:
        raise gr.Error(f"Failed to open/resize image: {e}")

    video_frame_width = target_size[0]
    video_frame_height = target_size[1]

    # Call your ovi_engine (unchanged)
    generated_video, generated_audio, _ = ovi_engine.generate(
        text_prompt=text_prompt,
        image_path=image_path,
        video_frame_height_width=[video_frame_height, video_frame_width],
        seed=video_seed,
        solver_name=solver_name,
        sample_steps=sample_steps,
        shift=shift,
        video_guidance_scale=video_guidance_scale,
        audio_guidance_scale=audio_guidance_scale,
        slg_layer=slg_layer,
        video_negative_prompt=video_negative_prompt,
        audio_negative_prompt=audio_negative_prompt,
    )

    save_video(output_path, generated_video, generated_audio, fps=24, sample_rate=16000)
    print(f"{session_id} video generation succeeded: {output_path}")

    return output_path

def cleanup(request: gr.Request):

    sid = request.session_hash
    if sid:
        d1 = os.path.join(os.environ["PROCESSED_RESULTS"], sid)
        shutil.rmtree(d1, ignore_errors=True)
        
def start_session(request: gr.Request):

    return request.session_hash

css = """
    #col-container {
        margin: 0 auto;
        max-width: 1024px;
    }
    """
theme = gr.themes.Ocean()

with gr.Blocks(css=css, theme=theme) as demo:

    session_state = gr.State()
    demo.load(start_session, outputs=[session_state])

    with gr.Column(elem_id="col-container"):
       
        with gr.Row():
            with gr.Column():
                # Image section

                video_text_prompt = gr.Textbox(label="Scene Prompt", 
                                               lines=5,
                                               placeholder="Describe your scene...")
                sample_steps = gr.Slider(
                    value=20,
                    label="Sample Steps",
                    minimum=20,
                    maximum=100,
                    step=1.0
                )
                run_btn = gr.Button("Action 🎬", variant="primary")

                image = gr.Image(type="filepath", label="Image Ref", height=360)

                gr.Markdown(
                    """
                    💡 **Prompt Guidelines**  
                    ```
                    Describe the Scene and Character(s) performance
                    , <S>Dialogue line<E>
                    <AUDCAP>character voice & atmosphere of the scene<ENDAUDCAP>
                    ```
                    """,
                    elem_classes="guideline-bubble"
                )

                with gr.Accordion("🎬 Video Generation Options", open=False, visible=True):
                    video_height = gr.Number(minimum=128, maximum=1280, value=512, step=32, label="Video Height")
                    video_width = gr.Number(minimum=128, maximum=1280, value=992, step=32, label="Video Width")

                    video_seed = gr.Number(minimum=0, maximum=100000, value=100, label="Video Seed")
                    solver_name = gr.Dropdown(
                        choices=["unipc", "euler", "dpm++"], value="unipc", label="Solver Name"
                    )

                    shift = gr.Slider(minimum=0.0, maximum=20.0, value=5.0, step=1.0, label="Shift")
                    video_guidance_scale = gr.Slider(minimum=0.0, maximum=10.0, value=4.0, step=0.5, label="Video Guidance Scale")
                    audio_guidance_scale = gr.Slider(minimum=0.0, maximum=10.0, value=3.0, step=0.5, label="Audio Guidance Scale")
                    slg_layer = gr.Number(minimum=-1, maximum=30, value=11, step=1, label="SLG Layer")
                    video_negative_prompt = gr.Textbox(label="Video Negative Prompt", placeholder="Things to avoid in video")
                    audio_negative_prompt = gr.Textbox(label="Audio Negative Prompt", placeholder="Things to avoid in audio")


            with gr.Column():
                output_path = gr.Video(label="Generated Video", height=360)

                gr.Examples(
                    examples=[

                        [
                            "What's the difference between having a job and having no life?",
                            20,
                            "example_prompts/pngs/91.png",
                        ],


                        [
                            "a alien creature looking to the right and slowly turning to the camera while drooling from her teeth and says <S>Hiss, You thought I can't talk.<E> then start screaming in a high pitch voice <AUDCAP>the alien has a raspy voice<ENDAUDCAP>",
                            20,
                            "example_prompts/pngs/90.png",
                        ],


                        [
                            "The video opens with a close-up of a woman with vibrant reddish-orange, shoulder-length hair and heavy dark eye makeup. She is wearing a dark brown leather jacket over a grey hooded top. She looks intently to her right, her mouth slightly agape, and her expression is serious and focused. The background shows a room with light green walls and dark wooden cabinets on the left, and a green plant on the right. She speaks, her voice clear and direct, saying, <S>doing<E>. She then pauses briefly, her gaze unwavering, and continues, <S>And I need you to trust them.<E>. Her mouth remains slightly open, indicating she is either about to speak more or has just finished a sentence, with a look of intense sincerity.. <AUDCAP>Tense, dramatic background music, clear female voice.<ENDAUDCAP>", 
                            20,
                            image_example,
                        ],

                        [
                            "A young woman with long, wavy blonde hair and light-colored eyes is shown in a medium shot against a blurred backdrop of lush green foliage. She wears a denim jacket over a striped top. Initially, her eyes are closed and her mouth is slightly open as she speaks, <S>Enjoy this moment<E>. Her eyes then slowly open, looking slightly upwards and to the right, as her expression shifts to one of thoughtful contemplation. She continues to speak, <S>No matter where it's taking<E>, her gaze then settling with a serious and focused look towards someone off-screen to her right.. <AUDCAP>Clear female voice, faint ambient outdoor sounds.<ENDAUDCAP>",
                            20,
                            "example_prompts/pngs/2.png",
                        ],

                        [
                            "A bearded man wearing large dark sunglasses and a blue patterned cardigan sits in a studio, actively speaking into a large, suspended microphone. He has headphones on and gestures with his hands, displaying rings on his fingers. Behind him, a wall is covered with red, textured sound-dampening foam on the left, and a white banner on the right features the ""CHOICE FM"" logo and various social media handles like ""@ilovechoicefm"" with ""RALEIGH"" below it. The man intently addresses the microphone, articulating, <S>is talent. It's all about authenticity. You gotta be who you really are, especially if you're working<E>. He leans forward slightly as he speaks, maintaining a serious expression behind his sunglasses.. <AUDCAP>Clear male voice speaking into a microphone, a low background hum.<ENDAUDCAP>",
                            20,
                            "example_prompts/pngs/5.png",
                        ],


                        [
                            "The scene is set outdoors with a blurry, bright green background, suggesting grass and a sunny environment. On the left, a woman with long, dark hair, wearing a red top and a necklace with a white pendant, faces towards the right. Her expression is serious and slightly perturbed as she speaks, with her lips slightly pursed. She says, <S>UFO, UFC thing.<E> On the right, the back of a man's head and his right ear are visible, indicating he is facing away from the camera, listening to the woman. He has short, dark hair. The woman continues speaking, her expression remaining serious, <S>And if you're not watching that, it's one of those ancient movies from an era that's<E> as the frame holds steady on the two figures.. <AUDCAP>Clear female speech, distant low-frequency hum.<ENDAUDCAP>",
                            20,
                            "example_prompts/pngs/9.png",
                        ],

                    ],
                    inputs=[video_text_prompt, sample_steps, image],
                    outputs=[output_path],
                    fn=generate_video,
                    cache_examples=True,
                )

    run_btn.click(
        fn=generate_scene,
        inputs=[video_text_prompt, sample_steps, image, session_state],
        outputs=[output_path],
    )

if __name__ == "__main__":
    demo.unload(cleanup)
    demo.queue()
    demo.launch(ssr_mode=False, share=True)