Spaces:
Build error
Build error
tried refactoring code
Browse files
app.py
CHANGED
|
@@ -4,7 +4,20 @@ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassifica
|
|
| 4 |
import gradio as gr
|
| 5 |
import spacy
|
| 6 |
nlp = spacy.load('en_core_web_sm')
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
auth_token = os.environ.get("HF_Token")
|
| 9 |
|
| 10 |
##Speech Recognition
|
|
@@ -37,19 +50,9 @@ def fin_ner(text):
|
|
| 37 |
|
| 38 |
##Fiscal Sentiment by Sentence
|
| 39 |
def fin_ext(text):
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
for sent in doc.sents:
|
| 44 |
-
sents_list.append(sent.text)
|
| 45 |
-
results = fin_model(sents_list)
|
| 46 |
-
results_list = []
|
| 47 |
-
for i in range(len(results)):
|
| 48 |
-
results_list.append(results[i]['label'])
|
| 49 |
-
fin_spans = []
|
| 50 |
-
fin_spans = list(zip(sents_list,results_list))
|
| 51 |
-
return fin_spans
|
| 52 |
-
|
| 53 |
##Forward Looking Statement
|
| 54 |
def fls(text):
|
| 55 |
doc = nlp(text)
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import spacy
|
| 6 |
nlp = spacy.load('en_core_web_sm')
|
| 7 |
+
nlp.add_pipe('sentencizer')
|
| 8 |
|
| 9 |
+
def split_in_sentences(text):
|
| 10 |
+
doc = nlp(text)
|
| 11 |
+
return [str(sent).strip() for sent in doc.sents]
|
| 12 |
+
|
| 13 |
+
def make_spans(text,results):
|
| 14 |
+
results_list = []
|
| 15 |
+
for i in range(len(results)):
|
| 16 |
+
results_list.append(results[i]['label'])
|
| 17 |
+
facts_spans = []
|
| 18 |
+
facts_spans = list(zip(split_in_sentences(text),results_list))
|
| 19 |
+
return facts_spans
|
| 20 |
+
|
| 21 |
auth_token = os.environ.get("HF_Token")
|
| 22 |
|
| 23 |
##Speech Recognition
|
|
|
|
| 50 |
|
| 51 |
##Fiscal Sentiment by Sentence
|
| 52 |
def fin_ext(text):
|
| 53 |
+
results = fin_model(split_in_sentences(text))
|
| 54 |
+
return make_spans(text,results)
|
| 55 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
##Forward Looking Statement
|
| 57 |
def fls(text):
|
| 58 |
doc = nlp(text)
|