Spaces:
Running
Running
| import gradio as gr | |
| import wave | |
| import numpy as np | |
| from io import BytesIO | |
| from huggingface_hub import hf_hub_download | |
| from piper import PiperVoice # Adjust import as per your project structure | |
| #file_path = hf_hub_download("rhasspy/piper-voices", "en_GB-alan-medium.onnx") | |
| def synthesize_speech(text): | |
| # Load the PiperVoice model and configuration | |
| # model_path = "en_GB-alan-medium.onnx" # this is for loading local model | |
| # config_path = "en_GB-alan-medium.onnx.json" # for loading local json | |
| model_path = hf_hub_download(repo_id="rhasspy/piper-voices", filename="en_GB-alan-medium.onnx") | |
| config_path = hf_hub_download(repo_id="rhasspy/piper-voices", filename="en_GB-alan-medium.onnx.json") | |
| voice = PiperVoice.load(model_path, config_path) | |
| # Create an in-memory buffer for the WAV file | |
| buffer = BytesIO() | |
| with wave.open(buffer, 'wb') as wav_file: | |
| wav_file.setframerate(voice.config.sample_rate) | |
| wav_file.setsampwidth(2) # 16-bit | |
| wav_file.setnchannels(1) # mono | |
| # Synthesize speech | |
| voice.synthesize(text, wav_file) | |
| # Convert buffer to NumPy array for Gradio output | |
| buffer.seek(0) | |
| audio_data = np.frombuffer(buffer.read(), dtype=np.int16) | |
| return audio_data.tobytes() | |
| # Create a Gradio interface with labels | |
| iface = gr.Interface( | |
| fn=synthesize_speech, | |
| inputs=gr.Textbox(label="Input Text"), | |
| outputs=[gr.Audio(label="Synthesized Speech")], | |
| title="Text to Speech Synthesizer", | |
| description="Enter text to synthesize it into speech using PiperVoice.", | |
| allow_flagging="never" | |
| ) | |
| # Run the app | |
| iface.launch() | |