import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch MODEL_ID = "Qwen/Qwen2.5-Coder-1.5B-Instruct" # or your model device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ) model.to(device) def generate(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.2) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface( fn=generate, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs=gr.Textbox(lines=2, max_lines=30) # auto-expands up to 30 lines ) demo.launch()