Spaces:
Sleeping
Sleeping
File size: 18,470 Bytes
6bf206f 5055394 a8be9e1 5055394 01f4616 196a7f0 58f7749 2896f25 f9b632a a8be9e1 f85c47a 3fff86b 5055394 f81b95a f3ce64a 5055394 a8be9e1 6bf206f 5055394 bb9501b a8be9e1 5055394 6bf206f 196a7f0 05c9e6a 6bf206f 5055394 6bf206f 5055394 a8be9e1 5055394 a7daca3 5055394 a493dba 5055394 a8be9e1 05c9e6a e6bc335 05c9e6a cc7b414 377d024 5055394 05c9e6a cc7b414 6bf206f 5055394 f2e901b a8be9e1 6bf206f a8be9e1 6bf206f a8be9e1 6bf206f a8be9e1 6bf206f a8be9e1 712d59b f2e901b 6bf206f 5055394 d678393 5055394 d678393 5055394 d678393 5055394 d678393 5055394 dba0d48 5055394 74ad3c4 5055394 6c1c16e 753eeda 6c1c16e 5055394 6c1c16e 5055394 524acf2 5055394 05c9e6a a271eeb 05c9e6a a271eeb 05c9e6a 6c1c16e 5055394 8c7099f 5055394 6c1c16e 5055394 6c1c16e 5055394 6c1c16e 5055394 6c1c16e 5055394 6c1c16e 5055394 6c1c16e 5055394 6c1c16e 05c9e6a 6c1c16e cb9b179 6c1c16e 05c9e6a cc7b414 05c9e6a 6c1c16e 05c9e6a cc7b414 6c1c16e 05c9e6a 6c1c16e 05c9e6a 6c1c16e cc7b414 6c1c16e cabc9dd 6c1c16e ccb2b2f 5055394 ccb2b2f 6c1c16e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import os
import time
import asyncio
from llama_index.core.query_engine import CitationQueryEngine
from llama_index.core import VectorStoreIndex
from llama_index.core import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.gemini import Gemini
from llama_index.core.postprocessor import SimilarityPostprocessor
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.core import StorageContext, load_index_from_storage
import re
import pandas as pd
import gradio as gr
import logging
#Enable logging to see what's happening behind the scenes
logging.basicConfig(level=logging.INFO)
token_w = os.environ['token_w']
HF_TOKEN=os.environ['token_r']
API_KEY=os.environ["GOOGLE_API_KEY"]
generation_config = {
"temperature": 0,
# "top_p": 1,
# "top_k": 1,
"max_output_tokens":8192,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
llm = Gemini(
model="models/gemini-1.5-flash-002",
generation_config=generation_config,
safety_settings=safety_settings,
)
# Setup embedder
embed_model_name = "BAAI/bge-small-en-v1.5"
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
Settings.llm = llm
Settings.embed_model = embed_model
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir="VectorStore")
# load index
index_persisted = load_index_from_storage(storage_context, index_id="vector_index")
async def remove_ref(text):
split_text = re.split(r'\bReference Papers\b', text, flags=re.IGNORECASE)
if len(split_text) > 1:
return split_text[0].strip()
return text.strip()
async def run_function_on_text(top_k,study_obj,study_type,phase,purpose,allocation,intervention_model,Masking,conditions,interventions,location_countries,removed_location_countries):
# Set up query engine
query_engine_get_study = CitationQueryEngine.from_args(
index_persisted,
similarity_top_k=top_k,
citation_chunk_size=2048,
verbose=True,
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.8)],
use_async=True
)
#Build prompt
study_information = f"""
#Study Objectives/Study Description
{study_obj}
#Intervention
{interventions}
#Location
- Location_Countries: {location_countries}
- Removed Location: {removed_location_countries}
#Conditions
Cancer {conditions}
#Study Design
- Study Type: {study_type}
- Phase: {phase}
- Primary Purpose: {purpose}
- Allocation: {allocation}
- Interventional Model: {intervention_model}
- Masking: None {Masking}
"""
# Query
query_response = await query_engine_get_study.aquery(f"""
Based on the provided instructions and clinical trial information, generate the new eligibility criteria by analyzing the related studies and clinical trial information.
Find suitable papers that have relevant or similar to the clinical trial information(### Clinical Trial Information).
Prioritize the following topics when finding related studies:
1. Study Objectives
2. Study Design and Phases
3. Conditions
4. Intervention/Treatment
Criteria generation:
As a clinical researcher, generate new eligibility criteria for given clinical trial information.
Analyze the information from related studies for more precise new eligibility criteria generation.
Ensure the criteria are clear, specific, and reasonable for a clinical research information.
Reference Papers generation:
Please give us NCT IDs and study names for {top_k} used papers.
Please follows the pattern of the output(### Pattern of the output).
--------------------------------------------------
### Clinical Trial Information
{study_information}
--------------------------------------------------
### Pattern of the output
Inclusion Criteria
1.
2.
.
.
.
Exclusion Criteria
1.
2.
.
.
.
Reference Papers
1.NCT ID:
Study Name:
Condition:
Intervention/Treatment:
2.NCT ID:
Study Name:
Condition:
Intervention/Treatment:
.
.
.
"""
)
#Extract ref
if query_response.response != "Empty Response":
pattern = r'Reference Papers:?\s*(.*?)(?:\n\n.*$|$)'
match = re.search(pattern, query_response.response, re.DOTALL | re.IGNORECASE)
ext_ref = match.group(1) if match and match.group(1) else ''
split_ref = re.split(r'\d+\.\s+', ext_ref)[1:]
formatted_ref = []
n=0
for ref in split_ref:
nct_match = re.search(r'NCT[_ ]ID: (NCT\d+)', ref)
if nct_match:
nct_id = nct_match.group(1)
else:
nct_match = re.search(r'(NCT\d+)', ref)
if nct_match:
nct_id = nct_match.group(1)
else:
continue
n+=1
study_name = re.search(r'Study Name:?\s*(.*?)(?=\n|Condition:|Intervention/Treatment:|$)', ref, re.DOTALL).group(1).strip()
condition = re.search(r'Condition:?\s*(.*?)(?=\n|Intervention/Treatment:|$)', ref, re.DOTALL).group(1).strip()
intervention = re.search(r'Intervention/Treatment:?\s*(.*?)(?=\n|$)', ref, re.DOTALL).group(1).strip()
study_name = re.sub(r'\*+', '', study_name).strip()
condition = re.sub(r'\*+', '', condition).strip()
intervention = re.sub(r'\*+', '', intervention).strip()
formatted_trial = [
n,
f'<a href="https://clinicaltrials.gov/study/{nct_id}"><u>{nct_id}</u></a>',
study_name,
condition,
intervention
]
formatted_ref.append(formatted_trial)
else:
formatted_ref = []
#Extract criteria
if query_response.response == "Empty Response":
return query_response,formatted_ref
else:
removed_ref = await remove_ref(query_response.response)
combine_criteira = re.sub(r'##\s*', '', removed_ref).strip()
combine_criteira = re.sub(r'#\s*', '', combine_criteira).strip()
combine_criteira = re.sub(r'\*\*', '', combine_criteira).strip()
combine_criteira = re.sub(r'(Criteria)\n\s*\n(\d+\.)', r'\1\n\2', combine_criteira).strip()
return combine_criteira,formatted_ref
# # LLM.complete
# complete_response = await llm.acomplete(f"""
# Based on the provided instructions and clinical trial information, generate the new eligibility criteria by analyzing clinical trial information(### Clinical Trial Information).
# ### Instruction:
# Criteria generation:
# As a clinical researcher, generate new eligibility criteria for given clinical trial information.
# Ensure the criteria are clear, specific, and reasonable for a clinical research information.
# Prioritize the following topics in clinical trial information.:
# 1. Study Objectives
# 2. Study Design and Phases
# 3. Conditions
# 4. Intervention/Treatment
# Please follow the pattern of the output(### Pattern of the output).
# --------------------------------------------------
# ### Clinical Trial Information
# {study_information}
# --------------------------------------------------
# ### Pattern of the output
# Inclusion Criteria
# 1.
# 2.
# .
# .
# .
# Exclusion Criteria
# 1.
# 2.
# .
# .
# .
# """
# )
# combine_response = await llm.acomplete(f"""
# Based on the provided instructions clinical, clinical trial information, and criteria information, generate the appropriate eligibility criteria for ### Clinical Trial Information by analyze clinical trial information(### Clinical Trial Information), criteria 1 (### Criteria 1) and criteria 2 (### Criteria 2).
# ### Instruction:
# Criteria generation:
# As a clinical researcher, generate appropriate eligibility criteria by analyzing given information.
# Ensure the criteria are clear, specific, and reasonable for a clinical research information(### Clinical Trial Information).
# Prioritize the following topics in clinical trial information.:
# 1. Study Objectives
# 2. Study Design and Phases
# 3. Conditions
# 4. Intervention/Treatment
# Do not generate redundant inclusion and exclusion criteria. For example, if a criterion is included in one set of inclusion or exclusion criteria, do not include it again.
# Reference Papers generation:
# Please give us NCT IDs and study names from the references list in ### Criteria 1.
# Please follow the pattern of the output(### Pattern of the output).
# --------------------------------------------------
# ### Clinical Trial Information
# {study_information}
# --------------------------------------------------
# ### Criteria 1
# {query_response}
# --------------------------------------------------
# ### Criteria 2
# {complete_response}
# --------------------------------------------------
# ### Pattern of the output
# Inclusion Criteria
# 1.
# 2.
# .
# .
# .
# Exclusion Criteria
# 1.
# 2.
# .
# .
# .
# Reference Papers
# 1.NCT ID:
# Study Name:
# Condition:
# Intervention/Treatment:
# 2.NCT ID:
# Study Name:
# Condition:
# Intervention/Treatment:
# .
# .
# .
# """
# )
# return query_response
# return query_response,complete_response,combine_response
# Place holder
place_holder = f"""Study Objectives
The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma
Conditions: Esophageal Carcinoma
Intervention / Treatment:
DRUG: Liposomal Paclitaxel,
DRUG: Nedaplatin
Location: China
Study Design and Phases
Study Type: INTERVENTIONAL
Phase: PHASE2 Primary Purpose:
TREATMENT Allocation: NA
Interventional Model: SINGLE_GROUP Masking: NONE
"""
objective_place_holder = f"""Example: The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma
"""
conditions_place_holder = f"""Example: Esophageal Carcinoma
"""
interventions_place_holder = f"""Example:
- Drug: irinotecan hydrochloride
- Given IV
- Other Names:
- Campto
- Camptosar
- CPT-11
- irinotecan
- U-101440E
- Drug: Amoxicillin hydrate
- Amoxicillin hydrate (potency)
- Procedure: Stem cell transplant
- See Detailed Description section for details of treatment interventions.
- Biological: Pneumococcal Vaccine
- Subcutaneously on Day 0
- Other Names:
- Prevnar
- Drug: Doxorubicin, Cotrimoxazole, Carboplatin, Ifosfamide
- Drug: Irinotecan
- Irinotecan will be administered at a dose of 180mg/m2 IV over 90 minutes on day 21 every 42 days.
- Other Names:
- CAMPTOSAR™
- Drug: Placeblo
- Placebo tablet
"""
prefilled_value = f"""[Clinicaltrials.gov](https://clinicaltrials.gov/) """
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# Reference paper"),
with gr.Row():
top_k_box = gr.Slider(
label="Amount of reference paper",
value=5,
minimum=0,
maximum=30,
step=1,
)
# Study description
with gr.Row():
gr.Markdown("# Research Information"),
with gr.Row():
study_obj_box = gr.Textbox(
label="Study Objective / Study Description", # Study description
# placeholder=prefilled_value,
placeholder=objective_place_holder,
lines=10)
# Conditions
with gr.Row():
gr.Markdown("# Conditions"),
with gr.Row():
conditions_box = gr.Textbox(
label="Conditions / Disease",
info="Primary Disease or Condition of Cancer Being Studied in the Trial, or the Focus of the Study",
placeholder=conditions_place_holder,
)
#Interventions
with gr.Row():
gr.Markdown("# Interventions / Drugs"),
with gr.Row():
intervention_box = gr.Textbox(
label="Intervention type",
info="A process or action studied in a clinical trial, including drugs, devices, procedures, vaccines, or noninvasive approaches.",
placeholder=interventions_place_holder,
# lines=5,
)
# Study Design
with gr.Row():
gr.Markdown("# Study Design"),
with gr.Column():
study_type_box = gr.Radio(
["Expanded Access", "Interventional", "Observational"],
label="Study Type",
)
phase_box= gr.CheckboxGroup(
["Not Applicable", "Early Phase 1", "Phase 1", "Phase 2", "Phase 3", "Phase 4"],
label="Phase"
)
purpose_box = gr.Radio(
["Treatment", "Prevention", "Diagnostic", "Educational/Counseling/Training", "Supportive Care", "Screening", "Health Services Research", "Basic Science", "Device Feasibility", "Other"],
label="Primary Purpose"
)
allocation_box = gr.Radio(
["Randomized", "Non-Randomized", "N/A"],
label="Allocation"
)
intervention_model_box = gr.Radio(
["Parallel", "Single-Group", "Crossover", "Factorial", "Sequential"],
label="Interventional Model"
)
masking_box = gr.Radio(
["None (Open Label)", "Single", "Double", "Triple", "Quadruple"],
label="Masking"
)
#Location
with gr.Row():
gr.Markdown("# Location"),
with gr.Column():
location_box = gr.Textbox(
label="Location (Countries)",
)
removed_location_box = gr.Textbox(
label="Removed Location (Countries)",
)
# Submit & Clear
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
# Output
with gr.Row():
gr.Markdown("# Eligibility Criteria Generation"),
with gr.Row():
with gr.Column():
base_box = gr.Textbox(
label="Response",
lines=15,
interactive=False)
with gr.Row():
ref_table = gr.Dataframe(
label="Reference",
headers=["No.",'Link', 'Study name', 'Condition', 'Intervention'],
datatype=["markdown","html","markdown", "markdown","markdown"],
wrap=True,
interactive=False)
# with gr.Column():
# rag_box = gr.Textbox(
# label="Response 2",
# lines=15,
# interactive=False)
# with gr.Column():
# combine_box = gr.Textbox(
# label="Response 3",
# lines=15,
# interactive=False)
with gr.Row():
regenerate_button = gr.Button("Regenerate")
inputs_information = [top_k_box, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box]
outputs_information = [base_box,ref_table]
# outputs_information = [base_box, rag_box,combine_box]
submit_button.click(
run_function_on_text,
inputs=inputs_information,
outputs=outputs_information
)
regenerate_button.click(
run_function_on_text,
inputs=inputs_information,
outputs=outputs_information
)
clear_button.click(lambda : [None] * len(inputs_information), outputs=inputs_information)
# with gr.Row():
# selected_response = gr.Radio(
# choices=[
# "Response 1",
# "Response 2",
# "Response 3",
# "All responses are equally good",
# "Neither response is satisfactory"
# ],
# label="Select the best response"
# )
# with gr.Row():
# flag_button = gr.Button("Flag Selected Response")
# #Flagging
# dataset_name = "ravistech/feedback-demo-space"
# hf_writer = gr.HuggingFaceDatasetSaver(hf_token=token_w, dataset_name=dataset_name, private=True)
# hf_writer.setup([selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box, combine_box],dataset_name)
# flag_button.click(lambda *args: hf_writer.flag(list(args)), [selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box, combine_box], None, preprocess=False)
#Clear all
with gr.Row():
clear_all_button = gr.Button("Clear All")
# flag_response = [selected_response]
all_information = inputs_information + outputs_information #+ flag_response
clear_all_button.click(lambda : [None] * len(all_information), outputs=all_information)
if __name__ == "__main__":
demo.launch(debug=True)
# custom_css = """
# .gradio-container {
# font-family: 'Roboto', sans-serif;
# }
# .main-header {
# text-align: center;
# color: #4a4a4a;
# margin-bottom: 2rem;
# }
# .tab-header {
# font-size: 1.2rem;
# font-weight: bold;
# margin-bottom: 1rem;
# }
# .custom-chatbot {
# border-radius: 10px;
# box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
# }
# .custom-button {
# background-color: #3498db;
# color: white;
# border: none;
# padding: 10px 20px;
# border-radius: 5px;
# cursor: pointer;
# transition: background-color 0.3s ease;
# }
# .custom-button:hover {
# background-color: #2980b9;
# }
# """
# # Define Gradio theme
# theme = gr.themes.Default(
# primary_hue="zinc",
# secondary_hue="red",
# neutral_hue="neutral",
# font=[gr.themes.GoogleFont('Roboto'), "sans-serif"]
# ) |