Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,203 +1,227 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
token_w=os.environ['token_w']
|
| 5 |
-
token_w_feedback=os.environ['token_w_feedback']
|
| 6 |
-
es_cloud_id=os.environ['es_cloud_id']
|
| 7 |
-
feedback_store=os.environ['feedback_store']
|
| 8 |
-
es_password=os.environ['es_password']
|
| 9 |
-
|
| 10 |
-
from llama_index.core import Settings
|
| 11 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 12 |
-
from llama_index.vector_stores.elasticsearch import ElasticsearchStore
|
| 13 |
from llama_index.core.query_engine import CitationQueryEngine
|
| 14 |
from llama_index.core import VectorStoreIndex
|
|
|
|
|
|
|
|
|
|
| 15 |
from llama_index.core.postprocessor import SimilarityPostprocessor
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
]
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
bnb_4bit_use_double_quant=True,
|
| 49 |
)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
# Get the model
|
| 53 |
-
llm = HuggingFaceLLM(
|
| 54 |
-
model_name=model_name,
|
| 55 |
-
tokenizer_name=model_name,
|
| 56 |
-
model_kwargs={
|
| 57 |
-
"token": token_r,
|
| 58 |
-
"quantization_config": quantization_config
|
| 59 |
-
},
|
| 60 |
-
context_window=8191,
|
| 61 |
-
max_new_tokens=2048,
|
| 62 |
-
generate_kwargs={
|
| 63 |
-
# "do_sample": True,
|
| 64 |
-
# "temperature": 0.1,
|
| 65 |
-
# "top_p": 0.9,
|
| 66 |
-
'repetition_penalty': 1.175,
|
| 67 |
-
# 'early_stopping': True
|
| 68 |
-
},
|
| 69 |
-
stopping_ids=stopping_ids,
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
# bge embedding model
|
| 73 |
-
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
| 74 |
-
Settings.embed_model = embed_model
|
| 75 |
-
|
| 76 |
-
# Llama-3-8B-Instruct model
|
| 77 |
Settings.llm = llm
|
|
|
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
|
| 81 |
-
es_vector_store = ElasticsearchStore(
|
| 82 |
-
index_name="train_criteria_index",
|
| 83 |
-
es_cloud_id=es_cloud_id,
|
| 84 |
-
es_user="elastic",
|
| 85 |
-
es_password=es_password,
|
| 86 |
-
)
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
citation_chunk_size=2048,
|
| 94 |
-
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.8)],
|
| 95 |
-
use_async=True,
|
| 96 |
verbose=True,
|
| 97 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
2. NCT ID:
|
| 172 |
-
Study Name:
|
| 173 |
-
3. NCT ID:
|
| 174 |
-
Study Name:
|
| 175 |
-
|
| 176 |
-
"""
|
| 177 |
)
|
| 178 |
-
|
| 179 |
-
# # Extract and clean data
|
| 180 |
-
# inclusion_criteria = clean_text(re.search(inclusion_pattern, text, flags).group(1))
|
| 181 |
-
# exclusion_criteria = clean_text(re.search(exclusion_pattern, text, flags).group(1))
|
| 182 |
-
# reference_papers = clean_text(re.search(reference_pattern, text, flags).group(1))
|
| 183 |
-
|
| 184 |
-
# # Combine all sections into one formatted string
|
| 185 |
-
# criteria_response = f"""Inclusion Criteria:
|
| 186 |
-
# {inclusion_criteria}
|
| 187 |
-
|
| 188 |
-
# Exclusion Criteria:
|
| 189 |
-
# {exclusion_criteria}
|
| 190 |
-
|
| 191 |
-
# Reference Papers:
|
| 192 |
-
# {reference_papers}"""
|
| 193 |
-
|
| 194 |
-
# return criteria_response
|
| 195 |
-
|
| 196 |
-
return criteria_response.text
|
| 197 |
-
# for chunk in criteria_response:
|
| 198 |
-
# yield chunk
|
| 199 |
|
|
|
|
| 200 |
|
|
|
|
| 201 |
place_holder = f"""Study Objectives
|
| 202 |
The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma
|
| 203 |
|
|
@@ -216,46 +240,217 @@ TREATMENT Allocation: NA
|
|
| 216 |
Interventional Model: SINGLE_GROUP Masking: NONE
|
| 217 |
"""
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
Allocation:
|
| 235 |
-
Interventional Model:
|
| 236 |
-
Masking:"""
|
| 237 |
-
|
| 238 |
-
hf_writer = gr.HuggingFaceDatasetSaver(hf_token=token_w_feedback, dataset_name="nttwt1597/criteria-feedback-demo", private=True)
|
| 239 |
-
|
| 240 |
-
prompt_box = gr.Textbox(
|
| 241 |
-
lines=10,
|
| 242 |
-
label=" Research Information",
|
| 243 |
-
# placeholder=place_holder,
|
| 244 |
-
value=prefilled_value,
|
| 245 |
-
)
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
flagging_callback=hf_writer,
|
| 259 |
)
|
| 260 |
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import time
|
| 3 |
+
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from llama_index.core.query_engine import CitationQueryEngine
|
| 5 |
from llama_index.core import VectorStoreIndex
|
| 6 |
+
from llama_index.core import Settings
|
| 7 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 8 |
+
from llama_index.llms.gemini import Gemini
|
| 9 |
from llama_index.core.postprocessor import SimilarityPostprocessor
|
| 10 |
|
| 11 |
+
HF_TOKEN=os.environ["HUGGINGFACE_TOKEN"]
|
| 12 |
+
API_KEY=os.environ["GOOGLE_API_KEY"]
|
| 13 |
+
|
| 14 |
+
generation_config = {
|
| 15 |
+
"temperature": 0,
|
| 16 |
+
# "top_p": 1,
|
| 17 |
+
# "top_k": 1,
|
| 18 |
+
"max_output_tokens":8192,
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
safety_settings = [
|
| 22 |
+
{
|
| 23 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
| 24 |
+
"threshold": "BLOCK_NONE"
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
| 28 |
+
"threshold": "BLOCK_NONE"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 32 |
+
"threshold": "BLOCK_NONE"
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 36 |
+
"threshold": "BLOCK_NONE"
|
| 37 |
+
},
|
| 38 |
]
|
| 39 |
|
| 40 |
+
llm = Gemini(
|
| 41 |
+
model="models/gemini-1.5-flash-002",
|
| 42 |
+
generation_config=generation_config,
|
| 43 |
+
safety_settings=safety_settings,
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
+
# Setup embedder
|
| 47 |
+
embed_model_name = "BAAI/bge-small-en-v1.5"
|
| 48 |
+
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
Settings.llm = llm
|
| 51 |
+
Settings.embed_model = embed_model
|
| 52 |
|
| 53 |
+
#to-do: get data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
async def run_function_on_text(top_k,study_obj,study_type,phase,purpose,allocation,intervention_model,Masking,conditions,interventions,location_countries,removed_location_countries):
|
| 56 |
|
| 57 |
+
# Set up query engine
|
| 58 |
+
query_engine_get_study = CitationQueryEngine.from_args(
|
| 59 |
+
index_persisted,
|
| 60 |
+
similarity_top_k=top_k,
|
| 61 |
citation_chunk_size=2048,
|
|
|
|
|
|
|
| 62 |
verbose=True,
|
| 63 |
+
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.8)],
|
| 64 |
+
use_async=True
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
#Build prompt
|
| 68 |
+
study_information = f"""
|
| 69 |
+
#Study Objectives/Study Description
|
| 70 |
+
{study_obj}
|
| 71 |
+
|
| 72 |
+
#Intervention
|
| 73 |
+
{interventions}
|
| 74 |
+
|
| 75 |
+
#Location
|
| 76 |
+
- Location_Countries: {location_countries}
|
| 77 |
+
- Removed Location: {removed_location_countries}
|
| 78 |
+
|
| 79 |
+
#Conditions
|
| 80 |
+
Cancer {conditions}
|
| 81 |
+
|
| 82 |
+
#Study Design
|
| 83 |
+
- Study Type: {study_type}
|
| 84 |
+
- Phase: {phase}
|
| 85 |
+
- Primary Purpose: {purpose}
|
| 86 |
+
- Allocation: {allocation}
|
| 87 |
+
- Interventional Model: {intervention_model}
|
| 88 |
+
- Masking: None {Masking}
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
# Query
|
| 92 |
+
query_response = await query_engine_get_study.aquery(f"""
|
| 93 |
+
Based on the provided instructions and clinical trial information, generate the new eligibility criteria by analyzing the related studies and clinical trial information.
|
| 94 |
+
### Instruction:
|
| 95 |
+
Find suitable papers that have relevant or similar to the clinical trial information(### Clinical Trial Information).
|
| 96 |
+
Prioritize the following topics when finding related studies:
|
| 97 |
+
1. Study Objectives
|
| 98 |
+
2. Study Design and Phases
|
| 99 |
+
3. Conditions
|
| 100 |
+
4. Intervention/Treatment
|
| 101 |
+
|
| 102 |
+
Criteria generation:
|
| 103 |
+
As a clinical researcher, generate new eligibility criteria for given clinical trial information.
|
| 104 |
+
Analyze the information from related studies for more precise new eligibility criteria generation.
|
| 105 |
+
Ensure the criteria are clear, specific, and reasonable for a clinical research information.
|
| 106 |
+
Do not generate [<number of citation>].
|
| 107 |
+
|
| 108 |
+
Reference Papers generation:
|
| 109 |
+
Please give us NCT IDs and study names for {top_k} used papers.
|
| 110 |
+
|
| 111 |
+
Please follows the pattern of the output(### Pattern of the output).
|
| 112 |
+
--------------------------------------------------
|
| 113 |
+
### Clinical Trial Information
|
| 114 |
+
{study_information}
|
| 115 |
+
--------------------------------------------------
|
| 116 |
+
### Pattern of the output
|
| 117 |
+
Inclusion Criteria
|
| 118 |
+
1.
|
| 119 |
+
2.
|
| 120 |
+
.
|
| 121 |
+
.
|
| 122 |
+
.
|
| 123 |
+
|
| 124 |
+
Exclusion Criteria
|
| 125 |
+
1.
|
| 126 |
+
2.
|
| 127 |
+
.
|
| 128 |
+
.
|
| 129 |
+
.
|
| 130 |
+
|
| 131 |
+
Reference Papers
|
| 132 |
+
1.NCT ID:
|
| 133 |
+
Study Name:
|
| 134 |
+
Condition:
|
| 135 |
+
Intervention/Treatment:
|
| 136 |
+
2.NCT ID:
|
| 137 |
+
Study Name:
|
| 138 |
+
Condition:
|
| 139 |
+
Intervention/Treatment:
|
| 140 |
+
.
|
| 141 |
+
.
|
| 142 |
+
.
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
"""
|
| 146 |
+
)
|
| 147 |
|
| 148 |
+
# LLM.complete
|
| 149 |
+
complete_response = await llm.acomplete(f"""
|
| 150 |
+
Based on the provided instructions and clinical trial information, generate the new eligibility criteria by analyzing clinical trial information(### Clinical Trial Information).
|
| 151 |
+
### Instruction:
|
| 152 |
+
Criteria generation:
|
| 153 |
+
As a clinical researcher, generate new eligibility criteria for given clinical trial information.
|
| 154 |
+
Ensure the criteria are clear, specific, and reasonable for a clinical research information.
|
| 155 |
+
|
| 156 |
+
Prioritize the following topics in clinical trial information.:
|
| 157 |
+
1. Study Objectives
|
| 158 |
+
2. Study Design and Phases
|
| 159 |
+
3. Conditions
|
| 160 |
+
4. Intervention/Treatment
|
| 161 |
+
|
| 162 |
+
Please follows the pattern of the output(### Pattern of the output).
|
| 163 |
+
--------------------------------------------------
|
| 164 |
+
### Clinical Trial Information
|
| 165 |
+
{study_information}
|
| 166 |
+
--------------------------------------------------
|
| 167 |
+
### Pattern of the output
|
| 168 |
+
Inclusion Criteria
|
| 169 |
+
1.
|
| 170 |
+
2.
|
| 171 |
+
.
|
| 172 |
+
.
|
| 173 |
+
.
|
| 174 |
+
|
| 175 |
+
Exclusion Criteria
|
| 176 |
+
1.
|
| 177 |
+
2.
|
| 178 |
+
.
|
| 179 |
+
.
|
| 180 |
+
.
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
Combine_response = await llm.acomplete(f"""
|
| 186 |
+
Based on the provided instructions clinical and criteria information, generate the new eligibility criteria by analyzing Criteria 1 (### Criteria 1) and Criteria 2 (### Criteria 2).
|
| 187 |
+
### Instruction:
|
| 188 |
+
Criteria generation:
|
| 189 |
+
As a clinical researcher, generate eligibility criteria for given information.
|
| 190 |
+
Ensure the criteria are clear, specific, and reasonable for a clinical research information().
|
| 191 |
+
|
| 192 |
+
Prioritize the following topics in clinical trial information.:
|
| 193 |
+
1. Study Objectives
|
| 194 |
+
2. Study Design and Phases
|
| 195 |
+
3. Conditions
|
| 196 |
+
4. Intervention/Treatment
|
| 197 |
+
|
| 198 |
+
Please follows the pattern of the output(### Pattern of the output).
|
| 199 |
+
--------------------------------------------------
|
| 200 |
+
### Clinical Trial Information
|
| 201 |
+
{study_information}
|
| 202 |
+
--------------------------------------------------
|
| 203 |
+
### Pattern of the output
|
| 204 |
+
Inclusion Criteria
|
| 205 |
+
1.
|
| 206 |
+
2.
|
| 207 |
+
.
|
| 208 |
+
.
|
| 209 |
+
.
|
| 210 |
+
|
| 211 |
+
Exclusion Criteria
|
| 212 |
+
1.
|
| 213 |
+
2.
|
| 214 |
+
.
|
| 215 |
+
.
|
| 216 |
+
.
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
return query_response,complete_response
|
| 223 |
|
| 224 |
+
# Place holder
|
| 225 |
place_holder = f"""Study Objectives
|
| 226 |
The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma
|
| 227 |
|
|
|
|
| 240 |
Interventional Model: SINGLE_GROUP Masking: NONE
|
| 241 |
"""
|
| 242 |
|
| 243 |
+
objective_place_holder = f"""Example: The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
conditions_place_holder = f"""Example: Esophageal Carcinoma
|
| 247 |
+
"""
|
| 248 |
|
| 249 |
+
interventions_place_holder = f"""Example:
|
| 250 |
+
- Drug: irinotecan hydrochloride
|
| 251 |
+
- Given IV
|
| 252 |
+
- Other Names:
|
| 253 |
+
- Campto
|
| 254 |
+
- Camptosar
|
| 255 |
+
- CPT-11
|
| 256 |
+
- irinotecan
|
| 257 |
+
- U-101440E
|
| 258 |
|
| 259 |
+
- Drug: Amoxicillin hydrate
|
| 260 |
+
- Amoxicillin hydrate (potency)
|
| 261 |
|
| 262 |
+
- Procedure: Stem cell transplant
|
| 263 |
+
- See Detailed Description section for details of treatment interventions.
|
| 264 |
|
| 265 |
+
- Biological: Pneumococcal Vaccine
|
| 266 |
+
- Subcutaneously on Day 0
|
| 267 |
+
- Other Names:
|
| 268 |
+
- Prevnar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
+
- Drug: Doxorubicin, Cotrimoxazole, Carboplatin, Ifosfamide
|
| 271 |
+
|
| 272 |
+
- Drug: Irinotecan
|
| 273 |
+
- Irinotecan will be administered at a dose of 180mg/m2 IV over 90 minutes on day 21 every 42 days.
|
| 274 |
+
- Other Names:
|
| 275 |
+
- CAMPTOSAR™
|
| 276 |
+
|
| 277 |
+
- Drug: Placeblo
|
| 278 |
+
- Placebo tablet
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
prefilled_value = f"""Study Objectives The purpose of this study is to find out if the combination of docetaxel and capecitabine can shrink the size of breast tumors and preserve the breast. Conditions: Breast Cancer Intervention / Treatment: DRUG: Docetaxel, DRUG: Capecitabine Location: United States Study Design and Phases Study Type: INTERVENTIONAL Phase: PHASE2 Primary Purpose: TREATMENT Allocation: RANDOMIZED Interventional Model: PARALLEL Masking: NONE"""
|
| 282 |
+
|
| 283 |
+
custom_css = """
|
| 284 |
+
.gradio-container {
|
| 285 |
+
font-family: 'Roboto', sans-serif;
|
| 286 |
+
}
|
| 287 |
+
.main-header {
|
| 288 |
+
text-align: center;
|
| 289 |
+
color: #4a4a4a;
|
| 290 |
+
margin-bottom: 2rem;
|
| 291 |
+
}
|
| 292 |
+
.tab-header {
|
| 293 |
+
font-size: 1.2rem;
|
| 294 |
+
font-weight: bold;
|
| 295 |
+
margin-bottom: 1rem;
|
| 296 |
+
}
|
| 297 |
+
.custom-chatbot {
|
| 298 |
+
border-radius: 10px;
|
| 299 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 300 |
+
}
|
| 301 |
+
.custom-button {
|
| 302 |
+
background-color: #3498db;
|
| 303 |
+
color: white;
|
| 304 |
+
border: none;
|
| 305 |
+
padding: 10px 20px;
|
| 306 |
+
border-radius: 5px;
|
| 307 |
+
cursor: pointer;
|
| 308 |
+
transition: background-color 0.3s ease;
|
| 309 |
+
}
|
| 310 |
+
.custom-button:hover {
|
| 311 |
+
background-color: #2980b9;
|
| 312 |
+
}
|
| 313 |
+
"""
|
| 314 |
|
| 315 |
+
# Define Gradio theme
|
| 316 |
+
theme = gr.themes.Default(
|
| 317 |
+
primary_hue="zinc",
|
| 318 |
+
secondary_hue="red",
|
| 319 |
+
neutral_hue="neutral",
|
| 320 |
+
font=[gr.themes.GoogleFont('Roboto'), "sans-serif"]
|
|
|
|
| 321 |
)
|
| 322 |
|
| 323 |
+
with gr.Blocks() as demo:
|
| 324 |
+
|
| 325 |
+
with gr.Row():
|
| 326 |
+
gr.Markdown("# Reference paper"),
|
| 327 |
+
with gr.Row():
|
| 328 |
+
top_k_box = gr.Slider(
|
| 329 |
+
label="Amount of reference paper",
|
| 330 |
+
value=5,
|
| 331 |
+
minimum=0,
|
| 332 |
+
maximum=30,
|
| 333 |
+
step=1,
|
| 334 |
+
)
|
| 335 |
+
# Study description
|
| 336 |
+
with gr.Row():
|
| 337 |
+
gr.Markdown("# Research Information"),
|
| 338 |
+
with gr.Row():
|
| 339 |
+
study_obj_box = gr.Textbox(
|
| 340 |
+
label="Study Objective / Study Description", # Study description
|
| 341 |
+
placeholder=objective_place_holder,
|
| 342 |
+
lines=10)
|
| 343 |
+
# Study Design
|
| 344 |
+
with gr.Row():
|
| 345 |
+
gr.Markdown("# Study Design"),
|
| 346 |
+
with gr.Column():
|
| 347 |
+
study_type_box = gr.Radio(
|
| 348 |
+
["Expanded Access", "Interventional", "Observational"],
|
| 349 |
+
label="Study Type",
|
| 350 |
+
)
|
| 351 |
+
phase_box= gr.Radio(
|
| 352 |
+
["Not Applicable", "Early Phase 1", "Phase 1", "Phase 2", "Phase 3", "Phase 4"],
|
| 353 |
+
label="Phase"
|
| 354 |
+
)
|
| 355 |
+
purpose_box = gr.Radio(
|
| 356 |
+
["Treatment", "Prevention", "Diagnostic", "Educational/Counseling/Training", "Supportive Care", "Screening", "Health Services Research", "Basic Science", "Device Feasibility", "Other"],
|
| 357 |
+
label="Primary Purpose"
|
| 358 |
+
)
|
| 359 |
+
allocation_box = gr.Radio(
|
| 360 |
+
["Randomized", "Non-Randomized", "N/A"],
|
| 361 |
+
label="Allocation"
|
| 362 |
+
)
|
| 363 |
+
intervention_model_box = gr.Radio(
|
| 364 |
+
["Parallel", "Single-Group", "Crossover", "Factorial", "Sequential"],
|
| 365 |
+
label="Interventional Model"
|
| 366 |
+
)
|
| 367 |
+
masking_box = gr.Radio(
|
| 368 |
+
["None (Open Label)", "Single", "Double", "Triple", "Quadruple"],
|
| 369 |
+
label="Masking"
|
| 370 |
+
)
|
| 371 |
+
# Conditions
|
| 372 |
+
with gr.Row():
|
| 373 |
+
gr.Markdown("# Conditions"),
|
| 374 |
+
with gr.Row():
|
| 375 |
+
conditions_box = gr.Textbox(
|
| 376 |
+
label="Conditions / Disease",
|
| 377 |
+
info="Primary Disease or Condition of Cancer Being Studied in the Trial, or the Focus of the Study",
|
| 378 |
+
placeholder=conditions_place_holder,
|
| 379 |
+
)
|
| 380 |
+
#Interventions
|
| 381 |
+
with gr.Row():
|
| 382 |
+
gr.Markdown("# Interventions / Drugs"),
|
| 383 |
+
with gr.Row():
|
| 384 |
+
intervention_box = gr.Textbox(
|
| 385 |
+
label="Intervention type",
|
| 386 |
+
placeholder=interventions_place_holder,
|
| 387 |
+
)
|
| 388 |
+
#Location
|
| 389 |
+
with gr.Row():
|
| 390 |
+
gr.Markdown("# Location"),
|
| 391 |
+
with gr.Column():
|
| 392 |
+
location_box = gr.Textbox(
|
| 393 |
+
label="Location (Countries)",
|
| 394 |
+
)
|
| 395 |
+
removed_location_box = gr.Textbox(
|
| 396 |
+
label="Removed Location (Countries)",
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
# Submit & Clear
|
| 400 |
+
with gr.Row():
|
| 401 |
+
submit_button = gr.Button("Submit")
|
| 402 |
+
clear_button = gr.Button("Clear")
|
| 403 |
+
|
| 404 |
+
# Output
|
| 405 |
+
with gr.Row():
|
| 406 |
+
gr.Markdown("# Eligibility Criteria Generation"),
|
| 407 |
+
with gr.Row():
|
| 408 |
+
with gr.Column():
|
| 409 |
+
base_box = gr.Textbox(
|
| 410 |
+
label="Response 1",
|
| 411 |
+
lines=5,
|
| 412 |
+
interactive=False)
|
| 413 |
+
with gr.Column():
|
| 414 |
+
rag_box = gr.Textbox(
|
| 415 |
+
label="Response 2",
|
| 416 |
+
lines=5,
|
| 417 |
+
interactive=False)
|
| 418 |
+
|
| 419 |
+
submit_button.click(
|
| 420 |
+
run_function_on_text,
|
| 421 |
+
inputs=[top_k_box,study_obj_box,study_type_box,phase_box,purpose_box,allocation_box,intervention_model_box,masking_box,conditions_box,intervention_box,location_box,removed_location_box],
|
| 422 |
+
outputs=[base_box, rag_box]
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
inputs_information = [top_k_box, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box]
|
| 426 |
+
|
| 427 |
+
clear_button.click(lambda : [None] * len(inputs_information), outputs=inputs_information)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
with gr.Row():
|
| 431 |
+
selected_response = gr.Radio(
|
| 432 |
+
choices=[
|
| 433 |
+
"Response 1 is better",
|
| 434 |
+
"Response 2 is better",
|
| 435 |
+
"Both responses are equally good",
|
| 436 |
+
"Neither response is satisfactory"
|
| 437 |
+
],
|
| 438 |
+
label="Select the better response"
|
| 439 |
+
)
|
| 440 |
+
with gr.Row():
|
| 441 |
+
flag_button = gr.Button("Flag Selected Response")
|
| 442 |
+
|
| 443 |
+
#Flagging
|
| 444 |
+
callback = gr.CSVLogger()
|
| 445 |
+
callback.setup([selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box], "flagged_data_points")
|
| 446 |
+
|
| 447 |
+
flag_button.click(lambda *args: callback.flag(list(args)), [selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box], None, preprocess=False)
|
| 448 |
+
|
| 449 |
+
with gr.Row():
|
| 450 |
+
clear_all_button = gr.Button("Clear All")
|
| 451 |
+
|
| 452 |
+
output_information = inputs_information + [base_box, rag_box, selected_response]
|
| 453 |
+
clear_all_button.click(lambda : [None] * len(output_information), outputs=output_information)
|
| 454 |
+
|
| 455 |
+
if __name__ == "__main__":
|
| 456 |
+
demo.launch(debug=True)
|