nttwt1597 commited on
Commit
cc7b414
·
verified ·
1 Parent(s): 141485d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -127
app.py CHANGED
@@ -157,104 +157,105 @@ async def run_function_on_text(top_k,study_obj,study_type,phase,purpose,allocati
157
  """
158
  )
159
 
160
- # LLM.complete
161
- complete_response = await llm.acomplete(f"""
162
- Based on the provided instructions and clinical trial information, generate the new eligibility criteria by analyzing clinical trial information(### Clinical Trial Information).
163
- ### Instruction:
164
- Criteria generation:
165
- As a clinical researcher, generate new eligibility criteria for given clinical trial information.
166
- Ensure the criteria are clear, specific, and reasonable for a clinical research information.
167
-
168
- Prioritize the following topics in clinical trial information.:
169
- 1. Study Objectives
170
- 2. Study Design and Phases
171
- 3. Conditions
172
- 4. Intervention/Treatment
173
-
174
- Please follow the pattern of the output(### Pattern of the output).
175
- --------------------------------------------------
176
- ### Clinical Trial Information
177
- {study_information}
178
- --------------------------------------------------
179
- ### Pattern of the output
180
- Inclusion Criteria
181
- 1.
182
- 2.
183
- .
184
- .
185
- .
186
-
187
- Exclusion Criteria
188
- 1.
189
- 2.
190
- .
191
- .
192
- .
193
-
194
-
195
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
  )
197
 
198
- combine_response = await llm.acomplete(f"""
199
- Based on the provided instructions clinical, clinical trial information, and criteria information, generate the appropriate eligibility criteria for ### Clinical Trial Information by analyze clinical trial information(### Clinical Trial Information), criteria 1 (### Criteria 1) and criteria 2 (### Criteria 2).
200
- ### Instruction:
201
- Criteria generation:
202
- As a clinical researcher, generate appropriate eligibility criteria by analyzing given information.
203
- Ensure the criteria are clear, specific, and reasonable for a clinical research information(### Clinical Trial Information).
204
-
205
- Prioritize the following topics in clinical trial information.:
206
- 1. Study Objectives
207
- 2. Study Design and Phases
208
- 3. Conditions
209
- 4. Intervention/Treatment
210
-
211
- Do not generate redundant inclusion and exclusion criteria. For example, if a criterion is included in one set of inclusion or exclusion criteria, do not include it again.
212
-
213
- Reference Papers generation:
214
- Please give us NCT IDs and study names from the references list in ### Criteria 1.
215
-
216
- Please follow the pattern of the output(### Pattern of the output).
217
- --------------------------------------------------
218
- ### Clinical Trial Information
219
- {study_information}
220
- --------------------------------------------------
221
- ### Criteria 1
222
- {query_response}
223
- --------------------------------------------------
224
- ### Criteria 2
225
- {complete_response}
226
- --------------------------------------------------
227
- ### Pattern of the output
228
- Inclusion Criteria
229
- 1.
230
- 2.
231
- .
232
- .
233
- .
234
-
235
- Exclusion Criteria
236
- 1.
237
- 2.
238
- .
239
- .
240
- .
241
-
242
- Reference Papers
243
- 1.NCT ID:
244
- Study Name:
245
- Condition:
246
- Intervention/Treatment:
247
- 2.NCT ID:
248
- Study Name:
249
- Condition:
250
- Intervention/Treatment:
251
- .
252
- .
253
- .
254
- """
255
- )
256
-
257
- return query_response,complete_response,combine_response
258
 
259
  # Place holder
260
  place_holder = f"""Study Objectives
@@ -406,19 +407,20 @@ with gr.Blocks() as demo:
406
  label="Response 1",
407
  lines=15,
408
  interactive=False)
409
- with gr.Column():
410
- rag_box = gr.Textbox(
411
- label="Response 2",
412
- lines=15,
413
- interactive=False)
414
- with gr.Column():
415
- combine_box = gr.Textbox(
416
- label="Response 3",
417
- lines=15,
418
- interactive=False)
419
 
420
  inputs_information = [top_k_box, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box]
421
- outputs_information = [base_box, rag_box,combine_box]
 
422
 
423
  submit_button.click(
424
  run_function_on_text,
@@ -428,26 +430,26 @@ with gr.Blocks() as demo:
428
 
429
  clear_button.click(lambda : [None] * len(inputs_information), outputs=inputs_information)
430
 
431
- with gr.Row():
432
- selected_response = gr.Radio(
433
- choices=[
434
- "Response 1",
435
- "Response 2",
436
- "Response 3",
437
- "All responses are equally good",
438
- "Neither response is satisfactory"
439
- ],
440
- label="Select the best response"
441
- )
442
- with gr.Row():
443
- flag_button = gr.Button("Flag Selected Response")
444
-
445
- #Flagging
446
- dataset_name = "ravistech/feedback-demo-space"
447
- hf_writer = gr.HuggingFaceDatasetSaver(hf_token=token_w, dataset_name=dataset_name, private=True)
448
- hf_writer.setup([selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box, combine_box],dataset_name)
449
-
450
- flag_button.click(lambda *args: hf_writer.flag(list(args)), [selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box, combine_box], None, preprocess=False)
451
 
452
  #Clear all
453
  with gr.Row():
 
157
  """
158
  )
159
 
160
+ # # LLM.complete
161
+ # complete_response = await llm.acomplete(f"""
162
+ # Based on the provided instructions and clinical trial information, generate the new eligibility criteria by analyzing clinical trial information(### Clinical Trial Information).
163
+ # ### Instruction:
164
+ # Criteria generation:
165
+ # As a clinical researcher, generate new eligibility criteria for given clinical trial information.
166
+ # Ensure the criteria are clear, specific, and reasonable for a clinical research information.
167
+
168
+ # Prioritize the following topics in clinical trial information.:
169
+ # 1. Study Objectives
170
+ # 2. Study Design and Phases
171
+ # 3. Conditions
172
+ # 4. Intervention/Treatment
173
+
174
+ # Please follow the pattern of the output(### Pattern of the output).
175
+ # --------------------------------------------------
176
+ # ### Clinical Trial Information
177
+ # {study_information}
178
+ # --------------------------------------------------
179
+ # ### Pattern of the output
180
+ # Inclusion Criteria
181
+ # 1.
182
+ # 2.
183
+ # .
184
+ # .
185
+ # .
186
+
187
+ # Exclusion Criteria
188
+ # 1.
189
+ # 2.
190
+ # .
191
+ # .
192
+ # .
193
+
194
+
195
+ # """
196
+ # )
197
+
198
+ # combine_response = await llm.acomplete(f"""
199
+ # Based on the provided instructions clinical, clinical trial information, and criteria information, generate the appropriate eligibility criteria for ### Clinical Trial Information by analyze clinical trial information(### Clinical Trial Information), criteria 1 (### Criteria 1) and criteria 2 (### Criteria 2).
200
+ # ### Instruction:
201
+ # Criteria generation:
202
+ # As a clinical researcher, generate appropriate eligibility criteria by analyzing given information.
203
+ # Ensure the criteria are clear, specific, and reasonable for a clinical research information(### Clinical Trial Information).
204
+
205
+ # Prioritize the following topics in clinical trial information.:
206
+ # 1. Study Objectives
207
+ # 2. Study Design and Phases
208
+ # 3. Conditions
209
+ # 4. Intervention/Treatment
210
+
211
+ # Do not generate redundant inclusion and exclusion criteria. For example, if a criterion is included in one set of inclusion or exclusion criteria, do not include it again.
212
+
213
+ # Reference Papers generation:
214
+ # Please give us NCT IDs and study names from the references list in ### Criteria 1.
215
+
216
+ # Please follow the pattern of the output(### Pattern of the output).
217
+ # --------------------------------------------------
218
+ # ### Clinical Trial Information
219
+ # {study_information}
220
+ # --------------------------------------------------
221
+ # ### Criteria 1
222
+ # {query_response}
223
+ # --------------------------------------------------
224
+ # ### Criteria 2
225
+ # {complete_response}
226
+ # --------------------------------------------------
227
+ # ### Pattern of the output
228
+ # Inclusion Criteria
229
+ # 1.
230
+ # 2.
231
+ # .
232
+ # .
233
+ # .
234
+
235
+ # Exclusion Criteria
236
+ # 1.
237
+ # 2.
238
+ # .
239
+ # .
240
+ # .
241
+
242
+ # Reference Papers
243
+ # 1.NCT ID:
244
+ # Study Name:
245
+ # Condition:
246
+ # Intervention/Treatment:
247
+ # 2.NCT ID:
248
+ # Study Name:
249
+ # Condition:
250
+ # Intervention/Treatment:
251
+ # .
252
+ # .
253
+ # .
254
+ # """
255
  )
256
 
257
+ return query_response
258
+ # return query_response,complete_response,combine_response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259
 
260
  # Place holder
261
  place_holder = f"""Study Objectives
 
407
  label="Response 1",
408
  lines=15,
409
  interactive=False)
410
+ # with gr.Column():
411
+ # rag_box = gr.Textbox(
412
+ # label="Response 2",
413
+ # lines=15,
414
+ # interactive=False)
415
+ # with gr.Column():
416
+ # combine_box = gr.Textbox(
417
+ # label="Response 3",
418
+ # lines=15,
419
+ # interactive=False)
420
 
421
  inputs_information = [top_k_box, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box]
422
+ outputs_information = [base_box]
423
+ # outputs_information = [base_box, rag_box,combine_box]
424
 
425
  submit_button.click(
426
  run_function_on_text,
 
430
 
431
  clear_button.click(lambda : [None] * len(inputs_information), outputs=inputs_information)
432
 
433
+ # with gr.Row():
434
+ # selected_response = gr.Radio(
435
+ # choices=[
436
+ # "Response 1",
437
+ # "Response 2",
438
+ # "Response 3",
439
+ # "All responses are equally good",
440
+ # "Neither response is satisfactory"
441
+ # ],
442
+ # label="Select the best response"
443
+ # )
444
+ # with gr.Row():
445
+ # flag_button = gr.Button("Flag Selected Response")
446
+
447
+ # #Flagging
448
+ # dataset_name = "ravistech/feedback-demo-space"
449
+ # hf_writer = gr.HuggingFaceDatasetSaver(hf_token=token_w, dataset_name=dataset_name, private=True)
450
+ # hf_writer.setup([selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box, combine_box],dataset_name)
451
+
452
+ # flag_button.click(lambda *args: hf_writer.flag(list(args)), [selected_response, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box, top_k_box, base_box, rag_box, combine_box], None, preprocess=False)
453
 
454
  #Clear all
455
  with gr.Row():