import os import time import asyncio from llama_index.core.query_engine import CitationQueryEngine from llama_index.core import VectorStoreIndex from llama_index.core import Settings from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import SimilarityPostprocessor from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.core import StorageContext, load_index_from_storage from llama_index.core.data_structs import Node from llama_index.core.schema import NodeWithScore import re import pandas as pd import gradio as gr import logging #Enable logging to see what's happening behind the scenes logging.basicConfig(level=logging.INFO) token_w = os.environ['token_w'] HF_TOKEN=os.environ['token_r'] API_KEY=os.environ["GOOGLE_API_KEY"] generation_config = { "temperature": 0, # "top_p": 1, # "top_k": 1, "max_output_tokens":8192, } safety_settings = [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE" }, ] llm = Gemini( model="models/gemini-1.5-flash-002", generation_config=generation_config, safety_settings=safety_settings, ) # Setup embedder embed_model_name = "malteos/scincl" embed_model = HuggingFaceEmbedding(model_name=embed_model_name) Settings.llm = llm Settings.embed_model = embed_model # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir="malteos_scincl__CAR_T_cell__PersistVectorStore_v2") # load index index_persisted = load_index_from_storage(storage_context, index_id="vector_index") async def clean_trial_text(text): """ Cleans text by removing everything starting from the word 'Reference Papers' and any special characters like '*'. """ # Remove special characters like '*' text = re.sub(r'\*+', '', text).strip() # Find the position of 'Reference Papers' and truncate the text reference_start = re.search(r'\bReference Papers\b', text, re.IGNORECASE) if reference_start: text = text[:reference_start.start()].strip() return text async def process_criteria(text): """ Processes the query response text, removing special characters and cleaning it up to the word 'Reference Papers'. """ text = re.sub(r'#+\s*', '', text) # Remove headings like '###' text = re.sub(r'(Criteria)\n\s*\n(\d+\.)', r'\1\n\2', text) # Fix spacing issues text = await clean_trial_text(text) # Clean up text until 'Reference Papers' return text async def extract_criteria(text): """Extracts inclusion and exclusion criteria from text.""" patterns = { "inclusion": r'Inclusion Criteria:?(.*?)(?=Exclusion Criteria)', "exclusion": r'Exclusion Criteria:?(.*?)(?=Reference Papers|\n\n\n)' } inclusion = re.search(patterns["inclusion"], text, re.DOTALL | re.IGNORECASE) exclusion = re.search(patterns["exclusion"], text, re.DOTALL | re.IGNORECASE) return ( "Inclusion Criteria:\n" + (inclusion.group(1).strip() if inclusion else "Not found") + "\n\n" + "Exclusion Criteria:\n" + (exclusion.group(1).strip() if exclusion else "Not found") ) async def run_function_on_text(top_k, study_obj, study_type, phase, purpose, allocation, intervention_model, Masking, conditions, interventions, location_countries, removed_location_countries): """Runs the main function to process study information and generate formatted output.""" # Set up query engine query_engine_get_study = CitationQueryEngine.from_args( index_persisted, similarity_top_k=top_k, citation_chunk_size=2048, verbose=True, node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.7)], use_async=True ) # Build prompt study_information = f""" # Study Objectives/Description {study_obj} # Intervention {interventions} # Location - Location_Countries: {location_countries} - Removed Location: {removed_location_countries} # Conditions Cancer {conditions} # Study Design - Study Type: {study_type} - Phase: {phase} - Primary Purpose: {purpose} - Allocation: {allocation} - Interventional Model: {intervention_model} - Masking: None {Masking} """ # Query query_response = await query_engine_get_study.aquery(f""" Based on the provided instructions and clinical trial information, generate the new eligibility criteria by analyzing the related studies and clinical trial information. ### Instruction: Find suitable papers that have relevant or similar to the clinical trial information(### Clinical Trial Information). Prioritize the following topics when finding related studies: 1. Study Objectives 2. Study Design and Phases 3. Conditions 4. Intervention/Treatment 5. Location Criteria generation: As a clinical researcher, generate new eligibility criteria for given clinical trial information. Analyze the information from related studies for more precise new eligibility criteria generation. Ensure the criteria are clear, specific, and reasonable for a clinical research information. Reference Papers generation: Please give us NCT IDs and study names for {top_k} used papers. Please follows the pattern of the output(### Pattern of the output). -------------------------------------------------- ### Clinical Trial Information {study_information} -------------------------------------------------- ### Pattern of the output Inclusion Criteria 1. 2. . . . Exclusion Criteria 1. 2. . . . Reference Papers 1.NCT ID: Study Name: Condition: Intervention/Treatment: 2.NCT ID: Study Name: Condition: Intervention/Treatment: . . . """ ) response = query_response.response if response != "Empty Response": final_response = await process_criteria(response) # Extract and format references pattern = r'Reference Papers\s*(.+)$' match = re.search(pattern, response, re.DOTALL | re.IGNORECASE) ext_ref = match.group(1) if match else "" split_ref = re.split(r'\n*\d+\.\s+', ext_ref)[1:] formatted_ref = [] for i, ref in enumerate(split_ref, 1): nct_id = re.search(r'NCT[_ ]ID: (NCT\d+)', ref) if not nct_id: nct_id = re.search(r'(NCT\d+)', ref) if not nct_id: continue study_name = re.search(r'Study[_ ]Name:?\s*(.*?)(?=\n|;|Condition:|Intervention/Treatment:|$)', ref, re.DOTALL) condition = re.search(r'Condition:?\s*(.*?)(?=\n|;|Intervention/Treatment:|$)', ref, re.DOTALL) intervention = re.search(r'Intervention/Treatment:?\s*(.*?)(?=\n|$)', ref, re.DOTALL) formatted_ref.append([ i, f'{nct_id.group(1)}', study_name.group(1).strip() if study_name else "", condition.group(1).strip() if condition else "", intervention.group(1).strip() if intervention else "" ]) else: final_response, formatted_ref = "Empty Response", [] return final_response, formatted_ref # Place holder place_holder = f"""Study Objectives The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma Conditions: Esophageal Carcinoma Intervention / Treatment: DRUG: Liposomal Paclitaxel, DRUG: Nedaplatin Location: China Study Design and Phases Study Type: INTERVENTIONAL Phase: PHASE2 Primary Purpose: TREATMENT Allocation: NA Interventional Model: SINGLE_GROUP Masking: NONE """ objective_place_holder = f"""Example: The purpose of this study is to evaluate the safety, tolerance and efficacy of Liposomal Paclitaxel With Nedaplatin as First-line in patients with Advanced or Recurrent Esophageal Carcinoma """ conditions_place_holder = f"""Example: Esophageal Carcinoma """ interventions_place_holder = f"""Example: - Drug: irinotecan hydrochloride - Given IV - Other Names: - Campto - Camptosar - CPT-11 - irinotecan - U-101440E - Drug: Amoxicillin hydrate - Amoxicillin hydrate (potency) - Biological: Pneumococcal Vaccine - Subcutaneously on Day 0 - Other Names: - Prevnar - Drug: Doxorubicin, Cotrimoxazole, Carboplatin, Ifosfamide - Drug: Irinotecan - Irinotecan will be administered at a dose of 180mg/m2 IV over 90 minutes on day 21 every 42 days. - Other Names: - CAMPTOSARâ„¢ - Drug: Placeblo - Placebo tablet """ with gr.Blocks() as demo: # Study description with gr.Row(): gr.Markdown("# Research Information"), with gr.Row(): study_obj_box = gr.Textbox( label="Study Objective / Study Description", placeholder=objective_place_holder, lines=10) # Conditions with gr.Row(): gr.Markdown("# Conditions"), with gr.Row(): conditions_box = gr.Textbox( label="Conditions / Disease", info="Primary condition or cancer type being studied in the trial", placeholder=conditions_place_holder, ) #Interventions with gr.Row(): gr.Markdown("# Interventions / Drugs"), with gr.Row(): intervention_box = gr.Textbox( label="Intervention Type", info="A process or action studied in a clinical trial, including drugs, devices, procedures, vaccines, or noninvasive approaches.", placeholder=interventions_place_holder, # lines=5, ) # Study Design with gr.Row(): gr.Markdown("# Study Design"), with gr.Column(): study_type_box = gr.Radio( ["Expanded Access", "Interventional", "Observational"], label="Study Type", ) phase_box= gr.CheckboxGroup( ["Not Applicable", "Early Phase 1", "Phase 1", "Phase 2", "Phase 3", "Phase 4"], label="Phase" ) purpose_box = gr.Radio( ["Treatment", "Prevention", "Diagnostic", "Educational/Counseling/Training", "Supportive Care", "Screening", "Health Services Research", "Basic Science", "Device Feasibility", "Other"], label="Primary Purpose" ) allocation_box = gr.Radio( ["Randomized", "Non-Randomized", "N/A"], label="Allocation" ) intervention_model_box = gr.Radio( ["Parallel", "Single-Group", "Crossover", "Factorial", "Sequential"], label="Interventional Model" ) masking_box = gr.Radio( ["None (Open Label)", "Single", "Double", "Triple", "Quadruple"], label="Masking" ) #Location with gr.Row(): gr.Markdown("# Location"), with gr.Column(): location_box = gr.Textbox( label="Location (Countries)", ) removed_location_box = gr.Textbox( label="Removed Location (Countries)", ) # Reference paper amount with gr.Row(): gr.Markdown("# Reference paper"), with gr.Row(): top_k_box = gr.Slider( label="Number of Reference Papers", info="Note: The number of reference papers may vary based on relevance. Only references that meet the similarity threshold will be included, so the final number may be less than specified.", value=10, minimum=10, maximum=30, step=1, ) # Submit & Clear with gr.Row(): submit_button = gr.Button("Submit") clear_button = gr.Button("Clear") # Output with gr.Row(): gr.Markdown("# Eligibility Criteria Generation"), with gr.Row(): with gr.Column(): base_box = gr.Textbox( label="Response", lines=15, interactive=False) with gr.Row(): ref_table = gr.Dataframe( label="Reference", headers=["No.",'Study Link', 'Study Title', 'Interventions', 'Conditions'], datatype=["markdown","html","markdown", "markdown","markdown"], wrap=True, interactive=False) # with gr.Column(): # rag_box = gr.Textbox( # label="Response 2", # lines=15, # interactive=False) # with gr.Column(): # combine_box = gr.Textbox( # label="Response 3", # lines=15, # interactive=False) with gr.Row(): regenerate_button = gr.Button("Regenerate Criteria") inputs_information = [top_k_box, study_obj_box, study_type_box, phase_box, purpose_box, allocation_box, intervention_model_box, masking_box, conditions_box, intervention_box, location_box, removed_location_box] outputs_information = [base_box,ref_table] # outputs_information = [base_box, rag_box,combine_box] submit_button.click( run_function_on_text, inputs=inputs_information, outputs=outputs_information ) regenerate_button.click( run_function_on_text, inputs=inputs_information, outputs=outputs_information ) clear_button.click(lambda : [None] * len(inputs_information), outputs=inputs_information) #Clear all with gr.Row(): clear_all_button = gr.Button("Clear All") # flag_response = [selected_response] all_information = inputs_information + outputs_information #+ flag_response clear_all_button.click(lambda : [None] * len(all_information), outputs=all_information) if __name__ == "__main__": demo.launch(debug=True) # demo.queue(max_size=20,default_concurrency_limit=5 ).launch(server_name="0.0.0.0", server_port=7860,debug=True, share=True)