Spaces:
Running
on
Zero
Running
on
Zero
| from dataclasses import dataclass | |
| from typing import Dict, Optional, Tuple, Union, Any, Callable | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import UNet2DConditionLoadersMixin | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.utils.torch_utils import is_torch_version | |
| from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.unets.unet_3d_blocks import ( | |
| UNetMidBlockSpatioTemporal, | |
| get_down_block as gdb, | |
| get_up_block as gub, | |
| ) | |
| from diffusers.models.resnet import ( | |
| Downsample2D, | |
| SpatioTemporalResBlock, | |
| Upsample2D, | |
| ) | |
| from diffusers.models.transformers.transformer_temporal import TransformerSpatioTemporalModel | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.utils import deprecate | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from network_utils import DragEmbedding, get_2d_sincos_pos_embed | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| class AllToFirstXFormersAttnProcessor: | |
| r""" | |
| Processor for implementing memory efficient attention using xFormers. | |
| Args: | |
| attention_op (`Callable`, *optional*, defaults to `None`): | |
| The base | |
| [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to | |
| use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best | |
| operator. | |
| """ | |
| def __init__(self, attention_op: Optional[Callable] = None): | |
| self.attention_op = attention_op | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.FloatTensor: | |
| if len(args) > 0 or kwargs.get("scale", None) is not None: | |
| deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
| deprecate("scale", "1.0.0", deprecation_message) | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, key_tokens, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| assert encoder_hidden_states is None | |
| attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) | |
| if attention_mask is not None: | |
| # expand our mask's singleton query_tokens dimension: | |
| # [batch*heads, 1, key_tokens] -> | |
| # [batch*heads, query_tokens, key_tokens] | |
| # so that it can be added as a bias onto the attention scores that xformers computes: | |
| # [batch*heads, query_tokens, key_tokens] | |
| # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. | |
| _, query_tokens, _ = hidden_states.shape | |
| attention_mask = attention_mask.expand(-1, query_tokens, -1) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1) | |
| value = attn.to_v(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1) | |
| query = attn.head_to_batch_dim(query).contiguous() | |
| key = attn.head_to_batch_dim(key).contiguous() | |
| value = attn.head_to_batch_dim(value).contiguous() | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class CrossAttnDownBlockSpatioTemporalWithFlow(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| flow_channels: int, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| num_attention_heads: int = 1, | |
| cross_attention_dim: int = 1280, | |
| add_downsample: bool = True, | |
| num_frames: int = 14, | |
| pos_embed_dim: int = 64, | |
| drag_token_cross_attn: bool = True, | |
| use_modulate: bool = True, | |
| drag_embedder_out_channels = (256, 320, 320), | |
| num_max_drags: int = 5, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| flow_convs = [] | |
| if drag_token_cross_attn: | |
| drag_token_mlps = [] | |
| self.num_max_drags = num_max_drags | |
| self.num_frames = num_frames | |
| self.pos_embed_dim = pos_embed_dim | |
| self.drag_token_cross_attn = drag_token_cross_attn | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| self.use_modulate = use_modulate | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| SpatioTemporalResBlock( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=1e-6, | |
| ) | |
| ) | |
| attentions.append( | |
| TransformerSpatioTemporalModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| ) | |
| flow_convs.append( | |
| DragEmbedding( | |
| conditioning_channels=flow_channels, | |
| conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels, | |
| block_out_channels = drag_embedder_out_channels, | |
| ) | |
| ) | |
| if drag_token_cross_attn: | |
| drag_token_mlps.append( | |
| nn.Sequential( | |
| nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim), | |
| nn.SiLU(), | |
| nn.Linear(cross_attention_dim, cross_attention_dim), | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.flow_convs = nn.ModuleList(flow_convs) | |
| if drag_token_cross_attn: | |
| self.drag_token_mlps = nn.ModuleList(drag_token_mlps) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample2D( | |
| out_channels, | |
| use_conv=True, | |
| out_channels=out_channels, | |
| padding=1, | |
| name="op", | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]} | |
| self.pos_embedding_prepared = False | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| image_only_indicator: Optional[torch.Tensor] = None, | |
| flow: Optional[torch.Tensor] = None, | |
| drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4) | |
| ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
| output_states = () | |
| batch_frame = hidden_states.shape[0] | |
| if self.drag_token_cross_attn: | |
| encoder_hidden_states_ori = encoder_hidden_states | |
| if not self.pos_embedding_prepared: | |
| for res in self.pos_embedding: | |
| self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states) | |
| self.pos_embedding_prepared = True | |
| blocks = list(zip(self.resnets, self.attentions, self.flow_convs)) | |
| for bid, (resnet, attn, flow_conv) in enumerate(blocks): | |
| if self.training and self.gradient_checkpointing: # TODO | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| image_only_indicator, | |
| **ckpt_kwargs, | |
| ) | |
| if flow is not None: | |
| # flow shape is (batch_frame, 40, h, w) | |
| drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
| drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
| drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
| invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
| if self.use_modulate: | |
| scale, shift = flow_conv(flow).chunk(2, dim=1) | |
| else: | |
| scale = 0 | |
| shift = flow_conv(flow) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| # print(self.drag_token_cross_attn) | |
| if self.drag_token_cross_attn: | |
| drag_token_mlp = self.drag_token_mlps[bid] | |
| pos_embed = self.pos_embedding[scale.shape[-1]] | |
| pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
| grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
| grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
| drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
| drag_token_out = drag_token_mlp(drag_token_in) | |
| # Mask the invalid drags | |
| drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
| drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
| drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
| drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| hidden_states = resnet( | |
| hidden_states, | |
| temb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| if flow is not None: | |
| # flow shape is (batch_frame, 40, h, w) | |
| drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
| drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
| drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
| invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
| if self.use_modulate: | |
| scale, shift = flow_conv(flow).chunk(2, dim=1) | |
| else: | |
| scale = 0 | |
| shift = flow_conv(flow) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| if self.drag_token_cross_attn: | |
| drag_token_mlp = self.drag_token_mlps[bid] | |
| pos_embed = self.pos_embedding[scale.shape[-1]] | |
| pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
| grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
| grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
| drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
| drag_token_out = drag_token_mlp(drag_token_in) | |
| # Mask the invalid drags | |
| drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
| drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
| drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
| drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| output_states = output_states + (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states = output_states + (hidden_states,) | |
| return hidden_states, output_states | |
| class CrossAttnUpBlockSpatioTemporalWithFlow(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| flow_channels: int, | |
| resolution_idx: Optional[int] = None, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| resnet_eps: float = 1e-6, | |
| num_attention_heads: int = 1, | |
| cross_attention_dim: int = 1280, | |
| add_upsample: bool = True, | |
| num_frames: int = 14, | |
| pos_embed_dim: int = 64, | |
| drag_token_cross_attn: bool = True, | |
| use_modulate: bool = True, | |
| drag_embedder_out_channels = (256, 320, 320), | |
| num_max_drags: int = 5, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| flow_convs = [] | |
| if drag_token_cross_attn: | |
| drag_token_mlps = [] | |
| self.num_max_drags = num_max_drags | |
| self.drag_token_cross_attn = drag_token_cross_attn | |
| self.num_frames = num_frames | |
| self.pos_embed_dim = pos_embed_dim | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| self.use_modulate = use_modulate | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| SpatioTemporalResBlock( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| ) | |
| ) | |
| attentions.append( | |
| TransformerSpatioTemporalModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| ) | |
| flow_convs.append( | |
| DragEmbedding( | |
| conditioning_channels=flow_channels, | |
| conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels, | |
| block_out_channels = drag_embedder_out_channels, | |
| ) | |
| ) | |
| if drag_token_cross_attn: | |
| drag_token_mlps.append( | |
| nn.Sequential( | |
| nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim), | |
| nn.SiLU(), | |
| nn.Linear(cross_attention_dim, cross_attention_dim), | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.flow_convs = nn.ModuleList(flow_convs) | |
| if drag_token_cross_attn: | |
| self.drag_token_mlps = nn.ModuleList(drag_token_mlps) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]} | |
| self.pos_embedding_prepared = False | |
| self.gradient_checkpointing = False | |
| self.resolution_idx = resolution_idx | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| image_only_indicator: Optional[torch.Tensor] = None, | |
| flow: Optional[torch.Tensor] = None, | |
| drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4) | |
| ) -> torch.FloatTensor: | |
| batch_frame = hidden_states.shape[0] | |
| if self.drag_token_cross_attn: | |
| encoder_hidden_states_ori = encoder_hidden_states | |
| if not self.pos_embedding_prepared: | |
| for res in self.pos_embedding: | |
| self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states) | |
| self.pos_embedding_prepared = True | |
| for bid, (resnet, attn, flow_conv) in enumerate(zip(self.resnets, self.attentions, self.flow_convs)): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: # TODO | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| image_only_indicator, | |
| **ckpt_kwargs, | |
| ) | |
| if flow is not None: | |
| # flow shape is (batch_frame, 40, h, w) | |
| drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
| drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
| drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
| invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
| if self.use_modulate: | |
| scale, shift = flow_conv(flow).chunk(2, dim=1) | |
| else: | |
| scale = 0 | |
| shift = flow_conv(flow) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| if self.drag_token_cross_attn: | |
| drag_token_mlp = self.drag_token_mlps[bid] | |
| pos_embed = self.pos_embedding[scale.shape[-1]] | |
| pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
| grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
| grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
| drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
| drag_token_out = drag_token_mlp(drag_token_in) | |
| # Mask the invalid drags | |
| drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
| drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
| drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
| drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| hidden_states = resnet( | |
| hidden_states, | |
| temb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| if flow is not None: | |
| # flow shape is (batch_frame, 40, h, w) | |
| drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
| drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
| drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
| invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
| if self.use_modulate: | |
| scale, shift = flow_conv(flow).chunk(2, dim=1) | |
| else: | |
| scale = 0 | |
| shift = flow_conv(flow) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| if self.drag_token_cross_attn: | |
| drag_token_mlp = self.drag_token_mlps[bid] | |
| pos_embed = self.pos_embedding[scale.shape[-1]] | |
| pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
| grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
| grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
| drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
| drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
| drag_token_out = drag_token_mlp(drag_token_in) | |
| # Mask the invalid drags | |
| drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
| drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
| drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
| drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states) | |
| return hidden_states | |
| def get_down_block( | |
| with_concatenated_flow: bool = False, | |
| *args, | |
| **kwargs, | |
| ): | |
| NEEDED_KEYS = [ | |
| "in_channels", | |
| "out_channels", | |
| "temb_channels", | |
| "flow_channels", | |
| "num_layers", | |
| "transformer_layers_per_block", | |
| "num_attention_heads", | |
| "cross_attention_dim", | |
| "add_downsample", | |
| "pos_embed_dim", | |
| 'use_modulate', | |
| "drag_token_cross_attn", | |
| "drag_embedder_out_channels", | |
| "num_max_drags", | |
| ] | |
| if not with_concatenated_flow or args[0] == "DownBlockSpatioTemporal": | |
| kwargs.pop("flow_channels", None) | |
| kwargs.pop("pos_embed_dim", None) | |
| kwargs.pop("use_modulate", None) | |
| kwargs.pop("drag_token_cross_attn", None) | |
| kwargs.pop("drag_embedder_out_channels", None) | |
| kwargs.pop("num_max_drags", None) | |
| return gdb(*args, **kwargs) | |
| elif args[0] == "CrossAttnDownBlockSpatioTemporal": | |
| for key in list(kwargs.keys()): | |
| if key not in NEEDED_KEYS: | |
| kwargs.pop(key, None) | |
| return CrossAttnDownBlockSpatioTemporalWithFlow(*args[1:], **kwargs) | |
| else: | |
| raise ValueError(f"Unknown block type {args[0]}") | |
| def get_up_block( | |
| with_concatenated_flow: bool = False, | |
| *args, | |
| **kwargs, | |
| ): | |
| NEEDED_KEYS = [ | |
| "in_channels", | |
| "out_channels", | |
| "prev_output_channel", | |
| "temb_channels", | |
| "flow_channels", | |
| "resolution_idx", | |
| "num_layers", | |
| "transformer_layers_per_block", | |
| "resnet_eps", | |
| "num_attention_heads", | |
| "cross_attention_dim", | |
| "add_upsample", | |
| "pos_embed_dim", | |
| "use_modulate", | |
| "drag_token_cross_attn", | |
| "drag_embedder_out_channels", | |
| "num_max_drags", | |
| ] | |
| if not with_concatenated_flow or args[0] == "UpBlockSpatioTemporal": | |
| kwargs.pop("flow_channels", None) | |
| kwargs.pop("pos_embed_dim", None) | |
| kwargs.pop("use_modulate", None) | |
| kwargs.pop("drag_token_cross_attn", None) | |
| kwargs.pop("drag_embedder_out_channels", None) | |
| kwargs.pop("num_max_drags", None) | |
| return gub(*args, **kwargs) | |
| elif args[0] == "CrossAttnUpBlockSpatioTemporal": | |
| for key in list(kwargs.keys()): | |
| if key not in NEEDED_KEYS: | |
| kwargs.pop(key, None) | |
| return CrossAttnUpBlockSpatioTemporalWithFlow(*args[1:], **kwargs) | |
| else: | |
| raise ValueError(f"Unknown block type {args[0]}") | |
| class UNetSpatioTemporalConditionOutput(BaseOutput): | |
| """ | |
| The output of [`UNetSpatioTemporalConditionModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): | |
| The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
| """ | |
| sample: torch.FloatTensor = None | |
| class UNetDragSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
| r""" | |
| A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and | |
| returns a sample shaped output. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| Parameters: | |
| sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
| Height and width of input/output sample. | |
| in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): | |
| The tuple of downsample blocks to use. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): | |
| The tuple of upsample blocks to use. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| addition_time_embed_dim: (`int`, defaults to 256): | |
| Dimension to to encode the additional time ids. | |
| projection_class_embeddings_input_dim (`int`, defaults to 768): | |
| The dimension of the projection of encoded `added_time_ids`. | |
| layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
| cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
| The dimension of the cross attention features. | |
| transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): | |
| The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
| [`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], | |
| [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], | |
| [`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. | |
| num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): | |
| The number of attention heads. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 8, | |
| out_channels: int = 4, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "DownBlockSpatioTemporal", | |
| ), | |
| up_block_types: Tuple[str] = ( | |
| "UpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| ), | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| addition_time_embed_dim: int = 256, | |
| projection_class_embeddings_input_dim: int = 768, | |
| layers_per_block: Union[int, Tuple[int]] = 2, | |
| cross_attention_dim: Union[int, Tuple[int]] = 1024, | |
| transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
| num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20), | |
| num_frames: int = 25, | |
| num_drags: int = 10, | |
| cond_dropout_prob: float = 0.1, | |
| pos_embed_dim: int = 64, | |
| drag_token_cross_attn: bool = True, | |
| use_modulate: bool = True, | |
| drag_embedder_out_channels = (256, 320, 320), | |
| cross_attn_with_ref: bool = True, | |
| double_batch: bool = False, | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| self.cond_dropout_prob = cond_dropout_prob | |
| self.drag_token_cross_attn = drag_token_cross_attn | |
| self.pos_embed_dim = pos_embed_dim | |
| self.use_modulate = use_modulate | |
| self.cross_attn_with_ref = cross_attn_with_ref | |
| self.double_batch = double_batch | |
| flow_channels = 6 * num_drags | |
| # Check inputs | |
| if len(down_block_types) != len(up_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
| ) | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
| ) | |
| if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
| ) | |
| # input | |
| self.conv_in = nn.Conv2d( | |
| in_channels, | |
| block_out_channels[0], | |
| kernel_size=3, | |
| padding=1, | |
| ) | |
| # time | |
| time_embed_dim = block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
| if isinstance(cross_attention_dim, int): | |
| cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
| if isinstance(layers_per_block, int): | |
| layers_per_block = [layers_per_block] * len(down_block_types) | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
| blocks_time_embed_dim = time_embed_dim | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| True, | |
| down_block_type, | |
| num_layers=layers_per_block[i], | |
| transformer_layers_per_block=transformer_layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=blocks_time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=1e-5, | |
| cross_attention_dim=cross_attention_dim[i], | |
| num_attention_heads=num_attention_heads[i], | |
| resnet_act_fn="silu", | |
| flow_channels=flow_channels, | |
| pos_embed_dim=pos_embed_dim, | |
| use_modulate=use_modulate, | |
| drag_token_cross_attn=drag_token_cross_attn, | |
| drag_embedder_out_channels=drag_embedder_out_channels, | |
| num_max_drags=num_drags, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = UNetMidBlockSpatioTemporal( | |
| block_out_channels[-1], | |
| temb_channels=blocks_time_embed_dim, | |
| transformer_layers_per_block=transformer_layers_per_block[-1], | |
| cross_attention_dim=cross_attention_dim[-1], | |
| num_attention_heads=num_attention_heads[-1], | |
| ) | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
| reversed_layers_per_block = list(reversed(layers_per_block)) | |
| reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
| reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| True, | |
| up_block_type, | |
| num_layers=reversed_layers_per_block[i] + 1, | |
| transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=blocks_time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=1e-5, | |
| resolution_idx=i, | |
| cross_attention_dim=reversed_cross_attention_dim[i], | |
| num_attention_heads=reversed_num_attention_heads[i], | |
| resnet_act_fn="silu", | |
| flow_channels=flow_channels, | |
| pos_embed_dim=pos_embed_dim, | |
| use_modulate=use_modulate, | |
| drag_token_cross_attn=drag_token_cross_attn, | |
| drag_embedder_out_channels=drag_embedder_out_channels, | |
| num_max_drags=num_drags, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = nn.Conv2d( | |
| block_out_channels[0], | |
| out_channels, | |
| kernel_size=3, | |
| padding=1, | |
| ) | |
| self.num_drags = num_drags | |
| self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]} | |
| self.pos_embedding_prepared = False | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors( | |
| name: str, | |
| module: torch.nn.Module, | |
| processors: Dict[str, AttentionProcessor], | |
| ): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
| def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
| """ | |
| Sets the attention processor to use [feed forward | |
| chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
| Parameters: | |
| chunk_size (`int`, *optional*): | |
| The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
| over each tensor of dim=`dim`. | |
| dim (`int`, *optional*, defaults to `0`): | |
| The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
| or dim=1 (sequence length). | |
| """ | |
| if dim not in [0, 1]: | |
| raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
| # By default chunk size is 1 | |
| chunk_size = chunk_size or 1 | |
| def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, chunk_size, dim) | |
| def _convert_drag_to_concatting_image(self, drags: torch.Tensor, current_resolution: int) -> torch.Tensor: | |
| batch_size, num_frames, num_points, _ = drags.shape | |
| num_channels = 6 | |
| concatting_image = -torch.ones( | |
| batch_size, num_frames, num_channels * num_points, current_resolution, current_resolution | |
| ).to(drags) | |
| not_all_zeros = drags.any(dim=-1).repeat_interleave(num_channels, dim=-1)[..., None, None] | |
| y_grid, x_grid = torch.meshgrid(torch.arange(current_resolution), torch.arange(current_resolution), indexing='ij') | |
| y_grid = y_grid.to(drags)[None, None, None] # (1, 1, 1, res, res) | |
| x_grid = x_grid.to(drags)[None, None, None] # (1, 1, 1, res, res) | |
| x0 = (drags[..., 0] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
| x_src = (drags[..., 0] * current_resolution - x0)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| x0 = x0[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| x0 = torch.stack([ | |
| x0, x0, | |
| torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1, | |
| torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1, | |
| ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
| y0 = (drags[..., 1] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
| y_src = (drags[..., 1] * current_resolution - y0)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| y0 = y0[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| y0 = torch.stack([ | |
| y0, y0, | |
| torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1, | |
| torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1, | |
| ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
| x1 = (drags[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
| x_tgt = (drags[..., 2] * current_resolution - x1)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| x1 = x1[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| x1 = torch.stack([ | |
| torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1, | |
| x1, x1, | |
| torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1 | |
| ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
| y1 = (drags[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
| y_tgt = (drags[..., 3] * current_resolution - y1)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| y1 = y1[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| y1 = torch.stack([ | |
| torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1, | |
| y1, y1, | |
| torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1 | |
| ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
| drags_final = drags[:, -1:, :, :].expand_as(drags) | |
| x_final = (drags_final[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
| x_final_tgt = (drags_final[..., 2] * current_resolution - x_final)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| x_final = x_final[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| x_final = torch.stack([ | |
| torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1, | |
| torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1, | |
| x_final, x_final | |
| ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
| y_final = (drags_final[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
| y_final_tgt = (drags_final[..., 3] * current_resolution - y_final)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| y_final = y_final[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
| y_final = torch.stack([ | |
| torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1, | |
| torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1, | |
| y_final, y_final | |
| ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
| value_image = torch.stack([ | |
| x_src, y_src, | |
| x_tgt, y_tgt, | |
| x_final_tgt, y_final_tgt | |
| ], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
| value_image = value_image.expand_as(concatting_image) | |
| start_mask = (x_grid == x0) & (y_grid == y0) & not_all_zeros | |
| end_mask = (x_grid == x1) & (y_grid == y1) & not_all_zeros | |
| final_mask = (x_grid == x_final) & (y_grid == y_final) & not_all_zeros | |
| concatting_image[start_mask] = value_image[start_mask] | |
| concatting_image[end_mask] = value_image[end_mask] | |
| concatting_image[final_mask] = value_image[final_mask] | |
| return concatting_image | |
| def zero_init(self): | |
| for block in self.down_blocks: | |
| if hasattr(block, "flow_convs"): | |
| for flow_conv in block.flow_convs: | |
| try: | |
| nn.init.constant_(flow_conv.conv_out.weight, 0) | |
| nn.init.constant_(flow_conv.conv_out.bias, 0) | |
| except: | |
| nn.init.constant_(flow_conv.weight, 0) | |
| for block in self.up_blocks: | |
| if hasattr(block, "flow_convs"): | |
| for flow_conv in block.flow_convs: | |
| try: | |
| nn.init.constant_(flow_conv.conv_out.weight, 0) | |
| nn.init.constant_(flow_conv.conv_out.bias, 0) | |
| except: | |
| nn.init.constant_(flow_conv.weight, 0) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| image_latents: torch.FloatTensor, | |
| encoder_hidden_states: torch.Tensor, | |
| added_time_ids: torch.Tensor, | |
| drags: torch.Tensor, | |
| force_drop_ids: Optional[torch.Tensor] = None, | |
| ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: | |
| r""" | |
| The [`UNetSpatioTemporalConditionModel`] forward method. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. | |
| image_latents (`torch.FloatTensor`): | |
| The clean conditioning tensor of the first frame of the image with shape `(batch, num_channels, height, width)`. | |
| timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
| encoder_hidden_states (`torch.FloatTensor`): | |
| The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. | |
| added_time_ids: (`torch.FloatTensor`): | |
| The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal | |
| embeddings and added to the time embeddings. | |
| drags (`torch.Tensor`): | |
| The drags tensor with shape `(batch, num_frames, num_points, 4)`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead | |
| of a plain tuple. | |
| Returns: | |
| [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: | |
| If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is | |
| returned, otherwise a `tuple` is returned where the first element is the sample tensor. | |
| """ | |
| batch_size, num_frames = sample.shape[:2] | |
| if not self.pos_embedding_prepared: | |
| for res in self.pos_embedding: | |
| self.pos_embedding[res] = self.pos_embedding[res].to(drags) | |
| self.pos_embedding_prepared = True | |
| # 0. prepare for cfg | |
| drag_drop_ids = None | |
| if (self.training and self.cond_dropout_prob > 0) or force_drop_ids is not None: | |
| if force_drop_ids is None: | |
| drag_drop_ids = torch.rand(batch_size, device=sample.device) < self.cond_dropout_prob | |
| else: | |
| drag_drop_ids = (force_drop_ids == 1) | |
| drags = drags * ~drag_drop_ids[:, None, None, None] | |
| sample = torch.cat([sample, image_latents[:, None].repeat(1, num_frames, 1, 1, 1)], dim=2) | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(batch_size) | |
| if self.cross_attn_with_ref and self.double_batch: | |
| sample_ref = image_latents[:, None].repeat(1, num_frames, 2, 1, 1) | |
| sample_ref[:, :, :4] = sample_ref[:, :, :4] * 0.18215 | |
| sample = torch.cat([sample_ref, sample], dim=0) | |
| drags = torch.cat([torch.zeros_like(drags), drags], dim=0) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states], dim=0) | |
| timesteps = torch.cat([timesteps, timesteps], dim=0) | |
| batch_size *= 2 | |
| drag_encodings = {res: self._convert_drag_to_concatting_image(drags, res) for res in [32, 16, 8]} | |
| t_emb = self.time_proj(timesteps) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb) | |
| # Flatten the batch and frames dimensions | |
| # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] | |
| sample = sample.flatten(0, 1) | |
| # Repeat the embeddings num_video_frames times | |
| # emb: [batch, channels] -> [batch * frames, channels] | |
| emb = emb.repeat_interleave(num_frames, dim=0) | |
| # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] | |
| encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| flow = drag_encodings[sample.shape[-1]] | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| flow=flow.flatten(0, 1), | |
| drag_original=drags.flatten(0, 1), | |
| ) | |
| else: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| sample = self.mid_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| # 5. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
| flow = drag_encodings[sample.shape[-1]] | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| flow=flow.flatten(0, 1), | |
| drag_original=drags.flatten(0, 1), | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| # 7. Reshape back to original shape | |
| sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) | |
| if self.cross_attn_with_ref and self.double_batch: | |
| sample = sample[batch_size // 2:] | |
| return sample | |
| if __name__ == "__main__": | |
| puppet_master = UNetDragSpatioTemporalConditionModel(num_drags=5) | |