Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import streamlit as st | |
| import pandas as pd | |
| import datetime | |
| import numpy as np | |
| import datetime | |
| import model | |
| import inference | |
| with st.spinner('Wait for it...'): | |
| if 'model' not in st.session_state: | |
| loaded_model,tokenizer_eng,tokenizer_ass,in_input_length = model.main() | |
| st.session_state['model'] = loaded_model | |
| st.session_state['tokenizer_eng'] = tokenizer_eng | |
| st.session_state['tokenizer_ass'] = tokenizer_ass | |
| st.session_state['in_input_length'] = in_input_length | |
| # st.success('Done!') | |
| # Global params | |
| # st.write(st.session_state) | |
| # def model_loading(): | |
| # return model.main() | |
| def show_information(): | |
| # Show Information about the selected Stock | |
| st.header('Now translate everything into English!') | |
| # st.caption("Analyzing data from 2015 to 2021") | |
| # st.text("1) There is a 60% chance of gap up opening in any random trade in Reliance 😮 ") | |
| # st.text("2) 1% of the gap up is more than Rs:15.00 i.e more quantity == more profit😇") | |
| # st.text("3) Median, Q3 or 75th percentile have increased from 2015(1.8) to 2021(11.55)💰") | |
| def select_text(): | |
| # Select the Suggested Assamese Text | |
| option = st.selectbox( | |
| 'Select these suggested Assamese Sentences', | |
| ('সমগ্ৰ দেশজুৰি ব্যাপক চৰ্চা হৈছিল উক্ত ঘটনাৰ ', | |
| 'দৃষ্টান্ত ব্যৱহাৰ কৰাৰ সম্পৰ্কে আমি যীচুৰ পৰা কি শিকিব পাৰোঁ ', | |
| 'তেওঁ যি ইচ্ছা তাকে কৰিব নোৱাৰে ')) | |
| st.write('You have selected suggested text') | |
| title = st.text_input('Assamese Text Input', option) | |
| # st.write('Your Assamese Text', title) | |
| return title | |
| # return selected_date | |
| # @st.cache | |
| # def prepare_data_for_selected_date(): | |
| # df = pd.read_csv("dataset/reliance_30min.csv") | |
| # df = helper.format_date(df) | |
| # df = helper.replace_vol(df) | |
| # df = helper.feature_main(df) | |
| # df.to_csv('dataset/processed_reliance30m.csv') | |
| # return df | |
| # @st.cache | |
| # def show_result(sentence): | |
| # pass | |
| # def show_prediction_result(prepared_data): | |
| # model = all_model.load_model() | |
| # result = all_model.prediction(model,prepared_data) | |
| # return result | |
| def main(): | |
| st.title('📚Assamese to English Translator🤓') | |
| show_information() | |
| text = select_text() | |
| if st.button('Translate'): | |
| result = inference.infer(st.session_state['model'],text,st.session_state['tokenizer_ass'], | |
| st.session_state['tokenizer_eng'],st.session_state['in_input_length']) | |
| st.caption('Your Assamese translated text') | |
| st.text(result[:-6]) | |
| if __name__ == "__main__": | |
| main() | 
