Spaces:
Paused
Paused
Rishi Desai
commited on
Commit
·
8308bbd
1
Parent(s):
632672e
init dump
Browse files
.env
ADDED
|
File without changes
|
main.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
from utils import crop_face, upscale_image
|
| 4 |
+
|
| 5 |
+
def parse_args():
|
| 6 |
+
parser = argparse.ArgumentParser(description='Face Enhancement Tool')
|
| 7 |
+
parser.add_argument('--input', type=str, required=True, help='Path to the input image')
|
| 8 |
+
parser.add_argument('--crop', action='store_true', help='Whether to crop the image')
|
| 9 |
+
parser.add_argument('--upscale', action='store_true', help='Whether to upscale the image')
|
| 10 |
+
parser.add_argument('--output', type=str, required=True, help='Path to save the output image')
|
| 11 |
+
args = parser.parse_args()
|
| 12 |
+
|
| 13 |
+
# Validate input file exists
|
| 14 |
+
if not os.path.exists(args.input):
|
| 15 |
+
parser.error(f"Input file does not exist: {args.input}")
|
| 16 |
+
|
| 17 |
+
# Validate output directory exists
|
| 18 |
+
output_dir = os.path.dirname(args.output)
|
| 19 |
+
if output_dir and not os.path.exists(output_dir):
|
| 20 |
+
parser.error(f"Output directory does not exist: {output_dir}")
|
| 21 |
+
|
| 22 |
+
return args
|
| 23 |
+
|
| 24 |
+
def main():
|
| 25 |
+
args = parse_args()
|
| 26 |
+
print(f"Processing image: {args.input}")
|
| 27 |
+
print(f"Crop enabled: {args.crop}")
|
| 28 |
+
print(f"Upscale enabled: {args.upscale}")
|
| 29 |
+
print(f"Output will be saved to: {args.output}")
|
| 30 |
+
|
| 31 |
+
face_image = args.input
|
| 32 |
+
if args.crop:
|
| 33 |
+
crop_face(args.input, "./scratch/cropped_face.png")
|
| 34 |
+
face_image = "./scratch/cropped_face.png"
|
| 35 |
+
|
| 36 |
+
if args.upscale:
|
| 37 |
+
upscale_image(face_image, "./scratch/upscaled_face.png")
|
| 38 |
+
face_image = "./scratch/upscaled_face.png"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
main()
|
utils.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import sys
|
| 6 |
+
import cv2
|
| 7 |
+
import base64
|
| 8 |
+
import aiohttp
|
| 9 |
+
from fal import Client as FalClient
|
| 10 |
+
sys.path.append('./ComfyUI_AutoCropFaces')
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
load_dotenv()
|
| 13 |
+
from Pytorch_Retinaface.pytorch_retinaface import Pytorch_RetinaFace
|
| 14 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 15 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 16 |
+
import gc
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
CACHE_DIR = '/workspace/huggingface_cache'
|
| 20 |
+
|
| 21 |
+
os.environ["HF_HOME"] = CACHE_DIR
|
| 22 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 23 |
+
|
| 24 |
+
device = "cuda"
|
| 25 |
+
|
| 26 |
+
def clear_cuda_memory():
|
| 27 |
+
"""Aggressively clear CUDA memory"""
|
| 28 |
+
gc.collect()
|
| 29 |
+
torch.cuda.empty_cache()
|
| 30 |
+
torch.cuda.synchronize()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_vision_models():
|
| 34 |
+
print("Loading CLIP and Florence models...")
|
| 35 |
+
# Load CLIP
|
| 36 |
+
clip_model = CLIPModel.from_pretrained(
|
| 37 |
+
"openai/clip-vit-large-patch14",
|
| 38 |
+
cache_dir=CACHE_DIR
|
| 39 |
+
).to(device)
|
| 40 |
+
clip_processor = CLIPProcessor.from_pretrained(
|
| 41 |
+
"openai/clip-vit-large-patch14",
|
| 42 |
+
cache_dir=CACHE_DIR
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Load Florence
|
| 46 |
+
florence_model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
"microsoft/Florence-2-large",
|
| 48 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 49 |
+
trust_remote_code=True,
|
| 50 |
+
cache_dir=CACHE_DIR
|
| 51 |
+
).to(device)
|
| 52 |
+
florence_processor = AutoProcessor.from_pretrained(
|
| 53 |
+
"microsoft/Florence-2-large",
|
| 54 |
+
trust_remote_code=True,
|
| 55 |
+
cache_dir=CACHE_DIR
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
return {
|
| 59 |
+
'clip_model': clip_model,
|
| 60 |
+
'clip_processor': clip_processor,
|
| 61 |
+
'florence_model': florence_model,
|
| 62 |
+
'florence_processor': florence_processor,
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def generate_caption(image):
|
| 67 |
+
vision_models = load_vision_models()
|
| 68 |
+
|
| 69 |
+
# Ensure the image is a PIL Image
|
| 70 |
+
if not isinstance(image, Image.Image):
|
| 71 |
+
image = Image.fromarray(image)
|
| 72 |
+
|
| 73 |
+
# Convert the image to RGB if it has an alpha channel
|
| 74 |
+
if image.mode == 'RGBA':
|
| 75 |
+
image = image.convert('RGB')
|
| 76 |
+
|
| 77 |
+
prompt = "<DETAILED_CAPTION>"
|
| 78 |
+
inputs = vision_models['florence_processor'](
|
| 79 |
+
text=prompt,
|
| 80 |
+
images=image,
|
| 81 |
+
return_tensors="pt"
|
| 82 |
+
).to(device, torch.float16 if torch.cuda.is_available() else torch.float32)
|
| 83 |
+
|
| 84 |
+
generated_ids = vision_models['florence_model'].generate(
|
| 85 |
+
input_ids=inputs["input_ids"],
|
| 86 |
+
pixel_values=inputs["pixel_values"],
|
| 87 |
+
max_new_tokens=1024,
|
| 88 |
+
num_beams=3,
|
| 89 |
+
do_sample=False
|
| 90 |
+
)
|
| 91 |
+
generated_text = vision_models['florence_processor'].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 92 |
+
parsed_answer = vision_models['florence_processor'].post_process_generation(
|
| 93 |
+
generated_text, task="<DETAILED_CAPTION>",
|
| 94 |
+
image_size=(image.width, image.height)
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
clear_cuda_memory()
|
| 98 |
+
return parsed_answer['<DETAILED_CAPTION>']
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def crop_face(image_path, output_dir, output_name, scale_factor=4.0):
|
| 102 |
+
image = Image.open(image_path).convert("RGB")
|
| 103 |
+
|
| 104 |
+
img_raw = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 105 |
+
img_raw = img_raw.astype(np.float32)
|
| 106 |
+
|
| 107 |
+
rf = Pytorch_RetinaFace(
|
| 108 |
+
cfg='mobile0.25',
|
| 109 |
+
pretrained_path='./weights/mobilenet0.25_Final.pth',
|
| 110 |
+
confidence_threshold=0.02,
|
| 111 |
+
nms_threshold=0.4,
|
| 112 |
+
vis_thres=0.6
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
dets = rf.detect_faces(img_raw)
|
| 116 |
+
print("Dets: ", dets)
|
| 117 |
+
|
| 118 |
+
# Instead of asserting, handle multiple faces gracefully
|
| 119 |
+
if len(dets) == 0:
|
| 120 |
+
print("No faces detected!")
|
| 121 |
+
return False
|
| 122 |
+
|
| 123 |
+
# If multiple faces detected, use the one with highest confidence
|
| 124 |
+
if len(dets) > 1:
|
| 125 |
+
print(f"Warning: {len(dets)} faces detected, using the one with highest confidence")
|
| 126 |
+
# Assuming dets is a list of [bbox, landmark, score] and we want to sort by score
|
| 127 |
+
dets = sorted(dets, key=lambda x: x[2], reverse=True) # Sort by confidence score
|
| 128 |
+
# Just keep the highest confidence detection
|
| 129 |
+
dets = [dets[0]]
|
| 130 |
+
|
| 131 |
+
# Pass the scale_factor to center_and_crop_rescale for adjustable crop size
|
| 132 |
+
try:
|
| 133 |
+
# Unpack the tuple correctly - the function returns (cropped_imgs, bbox_infos)
|
| 134 |
+
cropped_imgs, bbox_infos = rf.center_and_crop_rescale(img_raw, dets, shift_factor=0.45, scale_factor=scale_factor)
|
| 135 |
+
|
| 136 |
+
# Check if we got any cropped images
|
| 137 |
+
if not cropped_imgs or len(cropped_imgs) == 0:
|
| 138 |
+
print("No cropped images returned")
|
| 139 |
+
return False
|
| 140 |
+
|
| 141 |
+
# Use the first cropped face image directly - it's not nested
|
| 142 |
+
img_to_save = cropped_imgs[0]
|
| 143 |
+
|
| 144 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 145 |
+
cv2.imwrite(os.path.join(output_dir, output_name), img_to_save)
|
| 146 |
+
print(f"Saved: {output_name}")
|
| 147 |
+
return True
|
| 148 |
+
|
| 149 |
+
except Exception as e:
|
| 150 |
+
print(f"Error during face cropping: {e}")
|
| 151 |
+
return False
|
| 152 |
+
|
| 153 |
+
async def upscale_image(image_path, output_path):
|
| 154 |
+
"""Upscale an image using fal.ai's RealESRGAN model"""
|
| 155 |
+
fal_client = FalClient()
|
| 156 |
+
|
| 157 |
+
# Read and encode the image
|
| 158 |
+
with open(image_path, "rb") as image_file:
|
| 159 |
+
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
|
| 160 |
+
data_uri = f"data:image/jpeg;base64,{encoded_image}"
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
# Submit the upscaling request
|
| 164 |
+
handler = await fal_client.submit_async(
|
| 165 |
+
"fal-ai/real-esrgan",
|
| 166 |
+
arguments={
|
| 167 |
+
"image_url": data_uri,
|
| 168 |
+
"scale": 2,
|
| 169 |
+
"model": "RealESRGAN_x4plus",
|
| 170 |
+
"output_format": "png",
|
| 171 |
+
"face": True
|
| 172 |
+
},
|
| 173 |
+
)
|
| 174 |
+
result = await handler.get()
|
| 175 |
+
|
| 176 |
+
# Download and save the upscaled image
|
| 177 |
+
image_url = result['image_url']
|
| 178 |
+
async with aiohttp.ClientSession() as session:
|
| 179 |
+
async with session.get(image_url) as response:
|
| 180 |
+
if response.status == 200:
|
| 181 |
+
with open(output_path, 'wb') as f:
|
| 182 |
+
f.write(await response.read())
|
| 183 |
+
return True
|
| 184 |
+
else:
|
| 185 |
+
print(f"Failed to download upscaled image: {response.status}")
|
| 186 |
+
return False
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
print(f"Error during upscaling: {e}")
|
| 190 |
+
return False
|