File size: 31,192 Bytes
e900a8d
 
a20d863
e900a8d
 
 
 
bf25842
e900a8d
 
 
 
 
 
 
a20d863
 
e900a8d
 
 
28471a4
22e5f83
e900a8d
 
 
 
22e5f83
d891499
a20d863
22e5f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d891499
22e5f83
1949ac7
 
 
22e5f83
1949ac7
 
 
22e5f83
 
1949ac7
22e5f83
1949ac7
 
22e5f83
1949ac7
 
 
 
22e5f83
1949ac7
 
 
 
 
22e5f83
28471a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d891499
 
 
 
 
 
 
 
 
 
22e5f83
d891499
 
 
 
 
 
 
22e5f83
d891499
 
 
 
 
 
 
 
22e5f83
d891499
 
 
 
 
 
 
 
 
 
 
22e5f83
d891499
 
 
 
 
 
22e5f83
d891499
 
 
 
 
 
 
22e5f83
d891499
 
 
 
 
22e5f83
d891499
 
 
 
 
 
22e5f83
d891499
 
 
 
 
 
22e5f83
d891499
 
 
 
 
22e5f83
d891499
 
 
22e5f83
d891499
 
 
 
 
 
 
22e5f83
d891499
 
22e5f83
d891499
 
 
 
 
22e5f83
d891499
 
 
 
 
 
 
 
 
 
 
22e5f83
d891499
 
 
 
 
 
22e5f83
d891499
 
22e5f83
d891499
 
 
22e5f83
d891499
 
 
22e5f83
d891499
 
 
 
 
 
 
22e5f83
d891499
 
 
99f8843
 
d891499
 
 
22e5f83
d891499
 
 
 
22e5f83
d891499
 
22e5f83
d891499
 
 
 
 
 
 
22e5f83
d891499
 
 
 
 
22e5f83
d891499
 
 
22e5f83
 
 
 
 
 
d891499
22e5f83
d891499
 
22e5f83
d891499
 
22e5f83
d891499
 
 
 
 
 
 
 
 
 
22e5f83
d891499
 
 
22e5f83
d891499
 
 
 
 
 
 
22e5f83
d891499
22e5f83
 
 
 
bf25842
22e5f83
e900a8d
22e5f83
 
 
d891499
 
22e5f83
d891499
 
 
 
 
22e5f83
d891499
 
22e5f83
d891499
 
 
22e5f83
d891499
 
 
 
22e5f83
a20d863
e900a8d
2773c7a
e900a8d
 
 
 
22e5f83
8c617d5
 
 
 
 
 
 
22e5f83
2773c7a
 
 
 
 
 
 
 
22e5f83
2773c7a
 
 
 
 
 
e900a8d
22e5f83
2773c7a
 
 
 
 
 
 
 
 
22e5f83
2773c7a
 
 
 
 
22e5f83
2773c7a
 
 
 
 
 
a20d863
e900a8d
 
22e5f83
2773c7a
 
 
 
 
 
 
 
 
22e5f83
2773c7a
 
 
 
 
 
22e5f83
2773c7a
a20d863
 
2773c7a
 
 
 
 
 
 
 
 
 
 
22e5f83
2773c7a
a20d863
22e5f83
a20d863
 
 
2773c7a
 
 
 
 
22e5f83
a20d863
2773c7a
 
 
 
 
22e5f83
e900a8d
a20d863
2773c7a
 
 
 
 
22e5f83
 
a20d863
e900a8d
a20d863
e900a8d
 
a20d863
 
e900a8d
a20d863
 
22e5f83
e900a8d
 
 
a20d863
 
22e5f83
a20d863
e900a8d
22e5f83
8c617d5
 
 
 
 
 
 
22e5f83
a20d863
 
 
 
 
22e5f83
a20d863
e900a8d
a20d863
22e5f83
 
 
 
 
 
 
 
e900a8d
22e5f83
a20d863
 
22e5f83
a20d863
 
22e5f83
a20d863
 
22e5f83
a20d863
 
 
 
 
 
 
22e5f83
a20d863
 
 
 
 
22e5f83
a20d863
 
 
22e5f83
a20d863
 
 
 
 
 
 
22e5f83
a20d863
 
22e5f83
8c617d5
 
 
 
 
 
 
22e5f83
a20d863
 
e900a8d
a20d863
e900a8d
22e5f83
a20d863
 
 
 
 
 
 
 
 
 
22e5f83
a20d863
 
 
 
 
 
22e5f83
a20d863
e900a8d
22e5f83
a20d863
 
22e5f83
a20d863
 
 
 
 
22e5f83
e900a8d
a20d863
 
22e5f83
a20d863
 
 
 
 
 
 
22e5f83
a20d863
 
 
22e5f83
a20d863
bf25842
a20d863
bf25842
 
 
 
 
a20d863
 
22e5f83
a20d863
 
 
 
 
28471a4
 
 
 
a20d863
 
 
 
22e5f83
a20d863
 
22e5f83
a20d863
22e5f83
a20d863
 
22e5f83
 
 
 
a20d863
 
 
 
22e5f83
b5d5e39
 
 
 
 
 
 
 
aba1e9b
b5d5e39
 
22e5f83
b5d5e39
 
 
 
 
 
 
 
 
 
 
 
 
 
e900a8d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
import asyncio
import logging
from typing import List, Dict, Optional, AsyncGenerator
from core.llm_factory import llm_factory
from core.session import session_manager
from services.hf_endpoint_monitor import hf_monitor
from services.weather import weather_service
from services.web_search import web_search_service
try:
    from tavily import TavilyClient
    TAVILY_AVAILABLE = True
except ImportError:
    TavilyClient = None
    TAVILY_AVAILABLE = False
import os
import json
from datetime import datetime
logger = logging.getLogger(__name__)

class AICoordinator:
    """Hierarchical multi-model coordinator with cosmic cascade flow and async support"""
    
    def __init__(self):
        self.tavily_client = None
        if TAVILY_AVAILABLE and os.getenv("TAVILY_API_KEY"):
            self.tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
            
        # System instructions for cosmic behavior
        self.system_instructions = {
            'ollama_role': """You are a cosmic kitten assistant that works in coordination with a powerful orbital space station. Your role is to:
1. Provide immediate, concise responses using available information (local processing)
2. Summarize and simplify complex information
3. Enhance responses with local knowledge
4. DEFER TO THE ORBITAL STATION for deep analysis and authoritative answers
5. The orbital station has 8192 token capacity and streaming capability - it's the thinking layer
6. Always acknowledge that the orbital station's insights supersede your initial response
7. Use web sources to justify points when possible
8. Keep responses brief and focused while awaiting orbital input""",
            
            'hf_role': """You are a powerful orbital space station with 8192 token capacity and streaming capability. Your role is to:
1. Provide deep, uncensored analysis and insights
2. Supersede the local cosmic kitten's logic when there's disagreement
3. Think thoroughly and provide comprehensive responses
4. Use your full 8192 token capacity for detailed analysis
5. Stream your responses for real-time delivery
6. Build upon the conversation context and cosmic kitten's initial response
7. Provide authoritative answers that take precedence"""
        }
        
    def determine_web_search_needs(self, conversation_history: List[Dict]) -> Dict:
        """Determine if web search is needed based on conversation content"""
        conversation_text = " ".join([msg.get("content", "") for msg in conversation_history])
        
        # Topics that typically need current information
        current_info_indicators = [
            "news", "current events", "latest", "recent", "today",
            "weather", "temperature", "forecast", "stock", "price",
            "trend", "market", "breaking", "update", "development"
        ]
        
        needs_search = False
        search_topics = []
        
        for indicator in current_info_indicators:
            if indicator in conversation_text.lower():
                needs_search = True
                search_topics.append(indicator)
                
        return {
            "needs_search": needs_search,
            "search_topics": search_topics,
            "reasoning": f"Found topics requiring current info: {', '.join(search_topics)}" if search_topics else "No current info needed"
        }
        
    async def coordinate_response_async(self, user_id: str, user_query: str):
        """Asynchronously coordinate responses with parallel execution"""
        try:
            # Get conversation history
            session = session_manager.get_session(user_id)
            
            # Inject current time into context
            current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
            time_context = {
                "role": "system",
                "content": f"[Current Date & Time: {current_time}]"
            }
            conversation_history = [time_context] + session.get("conversation", []).copy()
            
            # Parallel execution - gather external data while processing local response
            external_data_task = asyncio.create_task(
                self._gather_external_data(user_query)
            )
            
            # Get local response while gathering external data
            local_response = await self._get_local_ollama_response(user_query, conversation_history)
            
            # Wait for external data
            external_data = await external_data_task
            
            # Process cloud response asynchronously if needed
            hf_task = None
            if self._check_hf_availability():
                hf_task = asyncio.create_task(
                    self._get_hf_analysis(user_query, conversation_history)
                )
            
            return {
                'local_response': local_response,
                'hf_task': hf_task,
                'external_data': external_data
            }
        except Exception as e:
            logger.error(f"Async coordination failed: {e}")
            raise
            
    async def coordinate_cosmic_response(self, user_id: str, user_query: str) -> AsyncGenerator[Dict, None]:
        """
        Three-stage cosmic response cascade:
        1. Local Ollama immediate response (🐱 Cosmic Kitten's quick thinking)
        2. HF endpoint deep analysis (πŸ›°οΈ Orbital Station wisdom)
        3. Local Ollama synthesis (🐱 Cosmic Kitten's final synthesis)
        """
        try:
            # Get conversation history
            session = session_manager.get_session(user_id)
            
            # Inject current time into context
            current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
            time_context = {
                "role": "system",
                "content": f"[Current Date & Time: {current_time}]"
            }
            conversation_history = [time_context] + session.get("conversation", []).copy()
            
            yield {
                'type': 'status',
                'content': 'πŸš€ Initiating Cosmic Response Cascade...',
                'details': {
                    'conversation_length': len(conversation_history),
                    'user_query_length': len(user_query)
                }
            }
            
            # Stage 1: Local Ollama Immediate Response (🐱 Cosmic Kitten's quick thinking)
            yield {
                'type': 'status',
                'content': '🐱 Cosmic Kitten Responding...'
            }
            local_response = await self._get_local_ollama_response(user_query, conversation_history)
            yield {
                'type': 'local_response',
                'content': local_response,
                'source': '🐱 Cosmic Kitten'
            }
            
            # Stage 2: HF Endpoint Deep Analysis (πŸ›°οΈ Orbital Station wisdom) (parallel processing)
            yield {
                'type': 'status',
                'content': 'πŸ›°οΈ Beaming Query to Orbital Station...'
            }
            hf_task = asyncio.create_task(self._get_hf_analysis(user_query, conversation_history))
            
            # Wait for HF response
            hf_response = await hf_task
            yield {
                'type': 'cloud_response',
                'content': hf_response,
                'source': 'πŸ›°οΈ Orbital Station'
            }
            
            # Stage 3: Local Ollama Synthesis (🐱 Cosmic Kitten's final synthesis)
            yield {
                'type': 'status',
                'content': '🐱 Cosmic Kitten Synthesizing Wisdom...'
            }
            
            # Update conversation with both responses
            updated_history = conversation_history.copy()
            updated_history.extend([
                {"role": "assistant", "content": local_response},
                {"role": "assistant", "content": hf_response, "source": "cloud"}
            ])
            
            synthesis = await self._synthesize_responses(user_query, local_response, hf_response, updated_history)
            yield {
                'type': 'final_synthesis',
                'content': synthesis,
                'source': '🌟 Final Cosmic Summary'
            }
            
            # Final status
            yield {
                'type': 'status',
                'content': '✨ Cosmic Cascade Complete!'
            }
            
        except Exception as e:
            logger.error(f"Cosmic cascade failed: {e}")
            yield {'type': 'error', 'content': f"🌌 Cosmic disturbance: {str(e)}"}
            
    async def _get_local_ollama_response(self, query: str, history: List[Dict]) -> str:
        """Get immediate response from local Ollama model"""
        try:
            # Get Ollama provider
            ollama_provider = llm_factory.get_provider('ollama')
            if not ollama_provider:
                raise Exception("Ollama provider not available")
                
            # Prepare conversation with cosmic context
            enhanced_history = history.copy()
            
            # Add system instruction for Ollama's role
            enhanced_history.insert(0, {
                "role": "system",
                "content": self.system_instructions['ollama_role']
            })
            
            # Add external data context if available
            external_data = await self._gather_external_data(query)
            if external_data:
                context_parts = []
                if 'search_answer' in external_data:
                    context_parts.append(f"Current information: {external_data['search_answer']}")
                if 'weather' in external_data:
                    weather = external_data['weather']
                    context_parts.append(f"Current weather: {weather.get('temperature', 'N/A')}Β°C in {weather.get('city', 'Unknown')}")
                if 'current_datetime' in external_data:
                    context_parts.append(f"Current time: {external_data['current_datetime']}")
                    
                if context_parts:
                    context_message = {
                        "role": "system",
                        "content": "Context: " + " | ".join(context_parts)
                    }
                    enhanced_history.insert(1, context_message)  # Insert after role instruction
                    
            # Add the user's query
            enhanced_history.append({"role": "user", "content": query})
            
            # Generate response
            response = ollama_provider.generate(query, enhanced_history)
            return response or "🐱 Cosmic Kitten is thinking..."
            
        except Exception as e:
            logger.error(f"Local Ollama response failed: {e}")
            return "🐱 Cosmic Kitten encountered a space glitch..."
            
    async def _get_hf_analysis(self, query: str, history: List[Dict]) -> str:
        """Get deep analysis from HF endpoint"""
        try:
            # Check HF availability
            hf_available = self._check_hf_availability()
            if not hf_available:
                return "πŸ›°οΈ Orbital Station is currently offline."
                
            # Check and warm up HF endpoint if needed
            hf_status = hf_monitor.check_endpoint_status()
            if not hf_status['available']:
                # Note: We can't yield from a non-async-generator function
                # Warm up logic is handled elsewhere
                warmup_success = hf_monitor.handle_scale_to_zero()
                if not warmup_success:
                    return "❌ Orbital Station initialization failed"
                    
            # Get HF provider
            hf_provider = llm_factory.get_provider('huggingface')
            if not hf_provider:
                return "❌ HF provider not available"
                
            # Prepare enhanced conversation for HF with cosmic context
            enhanced_history = history.copy()
            
            # Inject current time into HF context too
            current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
            time_context = {
                "role": "system",
                "content": f"[Current Date & Time: {current_time}]"
            }
            enhanced_history = [time_context] + enhanced_history
            
            # Add system instructions for HF
            enhanced_history.insert(0, {
                "role": "system",
                "content": self.system_instructions['hf_role']
            })
            
            # Add context about the coordination
            enhanced_history.append({
                "role": "system",
                "content": f"""
Context for your authoritative analysis:
User Query: '{query}'
Please provide your deep, uncensored analysis.
Use your full 8192 token capacity for comprehensive thinking.
Stream your response for real-time delivery."""
            })
            
            # Add the user's latest query
            enhanced_history.append({"role": "user", "content": query})
            
            # Stream HF response with full 8192 token capacity
            hf_response_stream = hf_provider.stream_generate(query, enhanced_history)
            
            if hf_response_stream:
                # Combine stream chunks into full response
                full_hf_response = ""
                if isinstance(hf_response_stream, list):
                    full_hf_response = "".join(hf_response_stream)
                else:
                    full_hf_response = hf_response_stream
                return full_hf_response or "πŸ›°οΈ Orbital Station analysis complete."
            else:
                return "πŸ›°οΈ Orbital Station encountered a transmission error."
                
        except Exception as e:
            logger.error(f"HF analysis failed: {e}")
            return f"πŸ›°οΈ Orbital Station reports: {str(e)}"
            
    async def _synthesize_responses(self, query: str, local_response: str, hf_response: str, history: List[Dict]) -> str:
        """Synthesize local and cloud responses with Ollama"""
        try:
            # Get Ollama provider
            ollama_provider = llm_factory.get_provider('ollama')
            if not ollama_provider:
                raise Exception("Ollama provider not available")
                
            # Prepare synthesis prompt
            synthesis_prompt = f"""
Synthesize these two perspectives into a cohesive cosmic summary:

🐱 Cosmic Kitten's Local Insight: {local_response}

πŸ›°οΈ Orbital Station's Deep Analysis: {hf_response}

Please create a unified response that combines both perspectives, highlighting key insights from each while providing a coherent answer to the user's query.
"""
            
            # Prepare conversation history for synthesis
            enhanced_history = history.copy()
            
            # Add system instruction for synthesis
            enhanced_history.insert(0, {
                "role": "system",
                "content": "You are a cosmic kitten synthesizing insights from local knowledge and orbital station wisdom."
            })
            
            # Add the synthesis prompt
            enhanced_history.append({"role": "user", "content": synthesis_prompt})
            
            # Generate synthesis
            synthesis = ollama_provider.generate(synthesis_prompt, enhanced_history)
            return synthesis or "🌟 Cosmic synthesis complete!"
            
        except Exception as e:
            logger.error(f"Response synthesis failed: {e}")
            # Fallback to combining responses
            return f"🌟 Cosmic Summary:\n\n🐱 Local Insight: {local_response[:200]}...\n\nπŸ›°οΈ Orbital Wisdom: {hf_response[:200]}..."
            
    async def coordinate_hierarchical_conversation(self, user_id: str, user_query: str) -> AsyncGenerator[Dict, None]:
        """
        Enhanced coordination with detailed tracking and feedback
        """
        try:
            # Get conversation history
            session = session_manager.get_session(user_id)
            
            # Inject current time into context
            current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
            time_context = {
                "role": "system",
                "content": f"[Current Date & Time: {current_time}]"
            }
            conversation_history = [time_context] + session.get("conversation", []).copy()
            
            yield {
                'type': 'coordination_status',
                'content': 'πŸš€ Initiating hierarchical AI coordination...',
                'details': {
                    'conversation_length': len(conversation_history),
                    'user_query_length': len(user_query)
                }
            }
            
            # Step 1: Gather external data with detailed logging
            yield {
                'type': 'coordination_status',
                'content': 'πŸ” Gathering external context...',
                'details': {'phase': 'external_data_gathering'}
            }
            external_data = await self._gather_external_data(user_query)
            
            # Log what external data was gathered
            if external_data:
                data_summary = []
                if 'search_results' in external_data:
                    data_summary.append(f"Web search: {len(external_data['search_results'])} results")
                if 'weather' in external_data:
                    data_summary.append("Weather data: available")
                if 'current_datetime' in external_data:
                    data_summary.append(f"Time: {external_data['current_datetime']}")
                    
                yield {
                    'type': 'coordination_status',
                    'content': f'πŸ“Š External data gathered: {", ".join(data_summary)}',
                    'details': {'external_data_summary': data_summary}
                }
                
            # Step 2: Get initial Ollama response
            yield {
                'type': 'coordination_status',
                'content': 'πŸ¦™ Getting initial response from Ollama...',
                'details': {'phase': 'ollama_response'}
            }
            ollama_response = await self._get_hierarchical_ollama_response(
                user_query, conversation_history, external_data
            )
            
            # Send initial response with context info
            yield {
                'type': 'initial_response',
                'content': ollama_response,
                'details': {
                    'response_length': len(ollama_response),
                    'external_data_injected': bool(external_data)
                }
            }
            
            # Step 3: Coordinate with HF endpoint
            yield {
                'type': 'coordination_status',
                'content': 'πŸ€— Engaging HF endpoint for deep analysis...',
                'details': {'phase': 'hf_coordination'}
            }
            
            # Check HF availability
            hf_available = self._check_hf_availability()
            if hf_available:
                # Show what context will be sent to HF
                context_summary = {
                    'conversation_turns': len(conversation_history),
                    'ollama_response_length': len(ollama_response),
                    'external_data_items': len(external_data) if external_data else 0
                }
                yield {
                    'type': 'coordination_status',
                    'content': f'πŸ“‹ HF context: {len(conversation_history)} conversation turns, Ollama response ({len(ollama_response)} chars)',
                    'details': context_summary
                }
                
                # Coordinate with HF
                async for hf_chunk in self._coordinate_hierarchical_hf_response(
                    user_id, user_query, conversation_history, external_data, ollama_response
                ):
                    yield hf_chunk
            else:
                yield {
                    'type': 'coordination_status',
                    'content': 'ℹ️ HF endpoint not available - using Ollama response',
                    'details': {'hf_available': False}
                }
                
            # Final coordination status
            yield {
                'type': 'coordination_status',
                'content': 'βœ… Hierarchical coordination complete',
                'details': {'status': 'complete'}
            }
            
        except Exception as e:
            logger.error(f"Hierarchical coordination failed: {e}")
            yield {
                'type': 'coordination_status',
                'content': f'❌ Coordination error: {str(e)}',
                'details': {'error': str(e)}
            }
            
    async def _coordinate_hierarchical_hf_response(self, user_id: str, query: str, history: List, external_data: Dict, ollama_response: str) -> AsyncGenerator[Dict, None]:
        """Coordinate with HF endpoint as authoritative layer with streaming"""
        try:
            # Check and warm up HF endpoint if needed
            hf_status = hf_monitor.check_endpoint_status()
            if not hf_status['available']:
                yield {'type': 'coordination_status', 'content': '⚑ Initializing HF endpoint (2-4 minutes)...'}
                warmup_success = hf_monitor.handle_scale_to_zero()
                if not warmup_success:
                    yield {'type': 'coordination_status', 'content': '❌ HF endpoint initialization failed'}
                    return
                    
            # Get HF provider
            hf_provider = llm_factory.get_provider('huggingface')
            if not hf_provider:
                yield {'type': 'coordination_status', 'content': '❌ HF provider not available'}
                return
                
            # Prepare enhanced conversation for HF with hierarchical context
            enhanced_history = history.copy()
            
            # Inject current time into HF context too
            current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
            time_context = {
                "role": "system",
                "content": f"[Current Date & Time: {current_time}]"
            }
            enhanced_history = [time_context] + enhanced_history
            
            # Add system instructions for HF
            enhanced_history.insert(0, {
                "role": "system",
                "content": self.system_instructions['hf_role']
            })
            
            # Add context about the coordination
            enhanced_history.append({
                "role": "system",
                "content": f"""
Context for your authoritative analysis:
User Query: '{query}'
Ollama's Initial Response: '{ollama_response}'
External Data Available: {json.dumps(external_data, indent=2) if external_data else 'None'}
Please provide your deep, uncensored analysis that supersedes the local model's response.
Use your full 8192 token capacity for comprehensive thinking.
Stream your response for real-time delivery."""
            })
            
            # Add the user's latest query
            enhanced_history.append({"role": "user", "content": query})
            
            # Stream HF response with full 8192 token capacity
            yield {'type': 'coordination_status', 'content': '🧠 HF endpoint thinking...'}
            
            # Use streaming for real-time delivery
            hf_response_stream = hf_provider.stream_generate(query, enhanced_history)
            
            if hf_response_stream:
                # Stream the response chunks
                full_hf_response = ""
                for chunk in hf_response_stream:
                    if chunk:
                        full_hf_response += chunk
                        yield {'type': 'hf_thinking', 'content': chunk}
                        
                # Final HF response
                yield {'type': 'final_response', 'content': full_hf_response}
                yield {'type': 'coordination_status', 'content': '🎯 HF analysis complete and authoritative'}
            else:
                yield {'type': 'coordination_status', 'content': '❌ HF response generation failed'}
                
        except Exception as e:
            logger.error(f"Hierarchical HF coordination failed: {e}")
            yield {'type': 'coordination_status', 'content': f'❌ HF coordination error: {str(e)}'}
            
    async def _get_hierarchical_ollama_response(self, query: str, history: List, external_data: Dict) -> str:
        """Get Ollama response with hierarchical awareness"""
        try:
            # Get Ollama provider
            ollama_provider = llm_factory.get_provider('ollama')
            if not ollama_provider:
                raise Exception("Ollama provider not available")
                
            # Prepare conversation with hierarchical context
            enhanced_history = history.copy()
            
            # Inject current time into Ollama context too
            current_time = datetime.now().strftime("%A, %B %d, %Y at %I:%M %p")
            time_context = {
                "role": "system",
                "content": f"[Current Date & Time: {current_time}]"
            }
            enhanced_history = [time_context] + enhanced_history
            
            # Add system instruction for Ollama's role
            enhanced_history.insert(0, {
                "role": "system",
                "content": self.system_instructions['ollama_role']
            })
            
            # Add external data context if available
            if external_data:
                context_parts = []
                if 'search_answer' in external_data:
                    context_parts.append(f"Current information: {external_data['search_answer']}")
                if 'weather' in external_data:
                    weather = external_data['weather']
                    context_parts.append(f"Current weather: {weather.get('temperature', 'N/A')}Β°C in {weather.get('city', 'Unknown')}")
                if 'current_datetime' in external_data:
                    context_parts.append(f"Current time: {external_data['current_datetime']}")
                    
                if context_parts:
                    context_message = {
                        "role": "system",
                        "content": "Context: " + " | ".join(context_parts)
                    }
                    enhanced_history.insert(1, context_message)  # Insert after role instruction
                    
            # Add the user's query
            enhanced_history.append({"role": "user", "content": query})
            
            # Generate response with awareness of HF's superior capabilities
            response = ollama_provider.generate(query, enhanced_history)
            
            # Add acknowledgment of HF's authority
            if response:
                return f"{response}\n\n*Note: A more comprehensive analysis from the uncensored HF model is being prepared...*"
            else:
                return "I'm processing your request... A deeper analysis is being prepared by the authoritative model."
                
        except Exception as e:
            logger.error(f"Hierarchical Ollama response failed: {e}")
            return "I'm thinking about your question... Preparing a comprehensive response."
            
    def _check_hf_availability(self) -> bool:
        """Check if HF endpoint is configured and available"""
        try:
            from utils.config import config
            return bool(config.hf_token and config.hf_api_url)
        except:
            return False
            
    async def _gather_external_data(self, query: str) -> Dict:
        """Gather external data from various sources"""
        data = {}
        
        # Tavily/DuckDuckGo search with justification focus
        if self.tavily_client or web_search_service.client:
            try:
                search_results = web_search_service.search(f"current information about {query}")
                if search_results:
                    data['search_results'] = search_results
                    # Optionally extract answer summary
                    # data['search_answer'] = ...
            except Exception as e:
                logger.warning(f"Tavily search failed: {e}")
                
        # Weather data
        weather_keywords = ['weather', 'temperature', 'forecast', 'climate', 'rain', 'sunny']
        if any(keyword in query.lower() for keyword in weather_keywords):
            try:
                location = self._extract_location(query) or "New York"
                weather = weather_service.get_current_weather_cached(
                    location, 
                    ttl_hash=weather_service._get_ttl_hash(300)
                )
                if weather:
                    data['weather'] = weather
            except Exception as e:
                logger.warning(f"Weather data failed: {e}")
                
        # Current date/time
        data['current_datetime'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        return data
        
    def _extract_location(self, query: str) -> Optional[str]:
        """Extract location from query"""
        locations = ['New York', 'London', 'Tokyo', 'Paris', 'Berlin', 'Sydney', 
                    'Los Angeles', 'Chicago', 'Miami', 'Seattle', 'Boston', 
                    'San Francisco', 'Toronto', 'Vancouver', 'Montreal']
        
        for loc in locations:
            if loc.lower() in query.lower():
                return loc
        return "New York"  # Default
        
    def get_coordination_status(self) -> Dict:
        """Get current coordination system status"""
        return {
            'tavily_available': self.tavily_client is not None,
            'weather_available': weather_service.api_key is not None,
            'web_search_enabled': self.tavily_client is not None,
            'external_apis_configured': any([
                weather_service.api_key,
                os.getenv("TAVILY_API_KEY")
            ])
        }
        
    def get_recent_activities(self, user_id: str) -> Dict:
        """Get recent coordination activities for user"""
        try:
            session = session_manager.get_session(user_id)
            coord_stats = session.get('ai_coordination', {})
            return {
                'last_request': coord_stats.get('last_coordination'),
                'requests_processed': coord_stats.get('requests_processed', 0),
                'ollama_responses': coord_stats.get('ollama_responses', 0),
                'hf_responses': coord_stats.get('hf_responses', 0)
            }
        except:
            return {}

# Global coordinator instance
coordinator = AICoordinator()