rdune71's picture
Implement UX enhancements: redesigned sidebar layout, stage-aware processing feedback, and user-friendly error messages
73ed159
raw
history blame
14.5 kB
import streamlit as st
import time
import os
import sys
import json
import asyncio
from datetime import datetime
from pathlib import Path
sys.path.append(str(Path(__file__).parent))
from utils.config import config
from core.llm import send_to_ollama, send_to_hf
from core.session import session_manager
from core.memory import check_redis_health
from core.coordinator import coordinator
from core.errors import translate_error
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
st.set_page_config(page_title="AI Life Coach", page_icon="🧠", layout="wide")
# Processing stage labels for better user feedback
PROCESSING_STAGES = {
"ollama": "πŸ¦™ Contacting Ollama...",
"hf_init": "⚑ Initializing HF Endpoint (2–4 minutes)...",
"hf_thinking": "🧠 HF Expert Thinking...",
"hf_complete": "🎯 HF Analysis Complete!",
"error": "⚠️ Something went wrong – trying again..."
}
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "last_error" not in st.session_state:
st.session_state.last_error = ""
if "is_processing" not in st.session_state:
st.session_state.is_processing = False
if "ngrok_url_temp" not in st.session_state:
st.session_state.ngrok_url_temp = st.session_state.get("ngrok_url", "https://7bcc180dffd1.ngrok-free.app")
if "hf_expert_requested" not in st.session_state:
st.session_state.hf_expert_requested = False
# Sidebar layout redesign
with st.sidebar:
st.title("🧠 AI Life Coach")
st.markdown("Your personal AI-powered life development assistant")
# PRIMARY ACTIONS
st.subheader("πŸ’¬ Primary Actions")
model_options = {
"Mistral 7B (Local)": "mistral:latest",
"Llama 2 7B (Local)": "llama2:latest",
"OpenChat 3.5 (Local)": "openchat:latest"
}
selected_model_name = st.selectbox(
"Select Model",
options=list(model_options.keys()),
index=0,
key="sidebar_model_select"
)
st.session_state.selected_model = model_options[selected_model_name]
st.divider()
# CONFIGURATION
st.subheader("βš™οΈ Configuration")
ngrok_url_input = st.text_input(
"Ollama Server URL",
value=st.session_state.ngrok_url_temp,
help="Enter your ngrok URL",
key="sidebar_ngrok_url"
)
if ngrok_url_input != st.session_state.ngrok_url_temp:
st.session_state.ngrok_url_temp = ngrok_url_input
st.success("βœ… URL updated!")
if st.button("πŸ“‘ Test Connection"):
try:
import requests
headers = {
"ngrok-skip-browser-warning": "true",
"User-Agent": "AI-Life-Coach-Test"
}
with st.spinner("Testing connection..."):
response = requests.get(
f"{ngrok_url_input}/api/tags",
headers=headers,
timeout=15
)
if response.status_code == 200:
st.success("βœ… Connection successful!")
else:
st.error(f"❌ Failed: {response.status_code}")
except Exception as e:
st.error(f"❌ Error: {str(e)[:50]}...")
if st.button("πŸ—‘οΈ Clear History"):
st.session_state.messages = []
st.success("History cleared!")
st.divider()
# ADVANCED FEATURES
with st.expander("πŸ” Advanced Features", expanded=False):
st.subheader("πŸ“Š System Monitor")
try:
from services.ollama_monitor import check_ollama_status
ollama_status = check_ollama_status()
if ollama_status.get("running"):
st.success("πŸ¦™ Ollama: Running")
else:
st.warning("πŸ¦™ Ollama: Not running")
except:
st.info("πŸ¦™ Ollama: Unknown")
try:
from services.hf_endpoint_monitor import hf_monitor
hf_status = hf_monitor.check_endpoint_status()
if hf_status['available']:
st.success("πŸ€— HF: Available")
else:
st.warning("πŸ€— HF: Not available")
except:
st.info("πŸ€— HF: Unknown")
if check_redis_health():
st.success("πŸ’Ύ Redis: Connected")
else:
st.error("πŸ’Ύ Redis: Disconnected")
st.divider()
st.subheader("πŸ€– HF Expert Analysis")
col1, col2 = st.columns([3, 1])
with col1:
st.markdown("""
**HF Expert Features:**
- Analyzes entire conversation history
- Performs web research when needed
- Provides deep insights and recommendations
- Acts as expert consultant in your conversation
""")
with col2:
if st.button("🧠 Activate HF Expert",
key="activate_hf_expert_sidebar",
help="Send conversation to HF endpoint for deep analysis",
use_container_width=True,
disabled=st.session_state.is_processing):
st.session_state.hf_expert_requested = True
# Main interface
st.title("🧠 AI Life Coach")
st.markdown("Ask me anything about personal development, goal setting, or life advice!")
# Display messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
# Format HF expert messages differently
if message.get("source") == "hf_expert":
st.markdown("### πŸ€– HF Expert Analysis")
st.markdown(message["content"])
else:
st.markdown(message["content"])
if "timestamp" in message:
st.caption(f"πŸ•’ {message['timestamp']}")
# Manual HF Analysis Section
if st.session_state.messages and len(st.session_state.messages) > 0:
st.divider()
# HF Expert Section
with st.expander("πŸ€– HF Expert Analysis", expanded=False):
st.subheader("Deep Conversation Analysis")
col1, col2 = st.columns([3, 1])
with col1:
st.markdown("""
**HF Expert Features:**
- Analyzes entire conversation history
- Performs web research when needed
- Provides deep insights and recommendations
- Acts as expert consultant in your conversation
""")
# Show conversation preview
st.markdown("**Conversation Preview for HF Expert:**")
st.markdown("---")
for i, msg in enumerate(st.session_state.messages[-5:]): # Last 5 messages
role = "πŸ‘€ You" if msg["role"] == "user" else "πŸ€– Assistant"
st.markdown(f"**{role}:** {msg['content'][:100]}{'...' if len(msg['content']) > 100 else ''}")
st.markdown("---")
with col2:
if st.button("🧠 Activate HF Expert",
key="activate_hf_expert",
help="Send conversation to HF endpoint for deep analysis",
use_container_width=True,
disabled=st.session_state.is_processing):
st.session_state.hf_expert_requested = True
# Show HF expert analysis when requested
if st.session_state.get("hf_expert_requested", False):
with st.spinner("🧠 HF Expert analyzing conversation..."):
try:
# Get conversation history
user_session = session_manager.get_session("default_user")
conversation_history = user_session.get("conversation", [])
# Show what HF expert sees
with st.expander("πŸ“‹ HF Expert Input", expanded=False):
st.markdown("**Conversation History Sent to HF Expert:**")
for i, msg in enumerate(conversation_history[-10:]): # Last 10 messages
st.markdown(f"**{msg['role'].capitalize()}:** {msg['content'][:100]}{'...' if len(msg['content']) > 100 else ''}")
# Request HF analysis
hf_analysis = coordinator.manual_hf_analysis(
"default_user",
conversation_history
)
if hf_analysis:
# Display HF expert response with clear indication
with st.chat_message("assistant"):
st.markdown("### πŸ€– HF Expert Analysis")
st.markdown(hf_analysis)
# Add research/web search decisions
research_needs = coordinator.determine_web_search_needs(conversation_history)
if research_needs["needs_search"]:
st.info(f"πŸ” **Research Needed:** {research_needs['reasoning']}")
if st.button("πŸ”Ž Perform Web Research", key="web_research_button"):
# Perform web search
with st.spinner("πŸ”Ž Searching for current information..."):
# Add web search logic here
st.success("βœ… Web research completed!")
# Add to message history with HF expert tag
st.session_state.messages.append({
"role": "assistant",
"content": hf_analysis,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"source": "hf_expert",
"research_needs": research_needs
})
st.session_state.hf_expert_requested = False
except Exception as e:
user_msg = translate_error(e)
st.error(f"❌ HF Expert analysis failed: {user_msg}")
st.session_state.hf_expert_requested = False
# Chat input - FIXED VERSION
user_input = st.chat_input("Type your message here...", disabled=st.session_state.is_processing)
# Process message when received
if user_input and not st.session_state.is_processing:
st.session_state.is_processing = True
# Display user message
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({
"role": "user",
"content": user_input,
"timestamp": datetime.now().strftime("%H:%M:%S")
})
# Process AI response
with st.chat_message("assistant"):
response_placeholder = st.empty()
status_placeholder = st.empty()
try:
# Get conversation history
user_session = session_manager.get_session("default_user")
conversation = user_session.get("conversation", [])
conversation_history = conversation[-5:] # Last 5 messages
conversation_history.append({"role": "user", "content": user_input})
# Try Ollama with proper error handling
status_placeholder.info(PROCESSING_STAGES["ollama"])
ai_response = None
try:
ai_response = send_to_ollama(
user_input,
conversation_history,
st.session_state.ngrok_url_temp,
st.session_state.selected_model
)
if ai_response:
response_placeholder.markdown(ai_response)
status_placeholder.success("βœ… Response received!")
else:
status_placeholder.warning("⚠️ Empty response from Ollama")
except Exception as ollama_error:
user_msg = translate_error(ollama_error)
status_placeholder.error(f"⚠️ {user_msg}")
# Fallback to HF if available
if config.hf_token and not ai_response:
status_placeholder.info(PROCESSING_STAGES["hf_init"])
try:
ai_response = send_to_hf(user_input, conversation_history)
if ai_response:
response_placeholder.markdown(ai_response)
status_placeholder.success("βœ… HF response received!")
else:
status_placeholder.error("❌ No response from HF")
except Exception as hf_error:
user_msg = translate_error(hf_error)
status_placeholder.error(f"⚠️ {user_msg}")
# Save response if successful
if ai_response:
# Update conversation history
conversation.append({"role": "user", "content": user_input})
conversation.append({"role": "assistant", "content": ai_response})
user_session["conversation"] = conversation
session_manager.update_session("default_user", user_session)
# Add to message history
st.session_state.messages.append({
"role": "assistant",
"content": ai_response,
"timestamp": datetime.now().strftime("%H:%M:%S")
})
else:
st.session_state.messages.append({
"role": "assistant",
"content": "Sorry, I couldn't process your request. Please try again.",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
except Exception as e:
user_msg = translate_error(e)
response_placeholder.error(f"⚠️ {user_msg}")
st.session_state.messages.append({
"role": "assistant",
"content": f"⚠️ {user_msg}",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
finally:
st.session_state.is_processing = False
time.sleep(0.5) # Brief pause
st.experimental_rerun()