|
|
|
|
|
import streamlit as st |
|
|
from utils.config import config |
|
|
import requests |
|
|
import json |
|
|
import os |
|
|
from core.memory import load_user_state, check_redis_health |
|
|
|
|
|
|
|
|
st.set_page_config(page_title="AI Life Coach", page_icon="🧘", layout="centered") |
|
|
|
|
|
|
|
|
if 'ngrok_url' not in st.session_state: |
|
|
st.session_state.ngrok_url = config.ollama_host |
|
|
if 'model_status' not in st.session_state: |
|
|
st.session_state.model_status = "checking" |
|
|
if 'available_models' not in st.session_state: |
|
|
st.session_state.available_models = [] |
|
|
if 'selected_model' not in st.session_state: |
|
|
st.session_state.selected_model = config.local_model_name |
|
|
|
|
|
|
|
|
st.sidebar.title("🧘 AI Life Coach") |
|
|
user = st.sidebar.selectbox("Select User", ["Rob", "Sarah"]) |
|
|
|
|
|
|
|
|
st.sidebar.markdown("---") |
|
|
st.sidebar.subheader("Ollama Connection") |
|
|
ngrok_input = st.sidebar.text_input("Ngrok URL", value=st.session_state.ngrok_url) |
|
|
if st.sidebar.button("Update Ngrok URL"): |
|
|
st.session_state.ngrok_url = ngrok_input |
|
|
st.session_state.model_status = "checking" |
|
|
st.session_state.available_models = [] |
|
|
st.sidebar.success("Ngrok URL updated!") |
|
|
st.experimental_rerun() |
|
|
|
|
|
|
|
|
NGROK_HEADERS = { |
|
|
"ngrok-skip-browser-warning": "true", |
|
|
"User-Agent": "AI-Life-Coach-App" |
|
|
} |
|
|
|
|
|
|
|
|
def fetch_available_models(ngrok_url): |
|
|
try: |
|
|
response = requests.get( |
|
|
f"{ngrok_url}/api/tags", |
|
|
headers=NGROK_HEADERS, |
|
|
timeout=5 |
|
|
) |
|
|
if response.status_code == 200: |
|
|
models_data = response.json().get("models", []) |
|
|
return [m.get("name") for m in models_data] |
|
|
except Exception: |
|
|
pass |
|
|
return [] |
|
|
|
|
|
|
|
|
if st.session_state.ngrok_url and st.session_state.model_status != "unreachable": |
|
|
model_names = fetch_available_models(st.session_state.ngrok_url) |
|
|
if model_names: |
|
|
st.session_state.available_models = model_names |
|
|
|
|
|
if st.session_state.selected_model not in model_names: |
|
|
st.session_state.selected_model = model_names[0] |
|
|
|
|
|
|
|
|
st.sidebar.markdown("---") |
|
|
st.sidebar.subheader("Model Selection") |
|
|
if st.session_state.available_models: |
|
|
selected_model = st.sidebar.selectbox( |
|
|
"Select Model", |
|
|
st.session_state.available_models, |
|
|
index=st.session_state.available_models.index(st.session_state.selected_model) |
|
|
if st.session_state.selected_model in st.session_state.available_models |
|
|
else 0 |
|
|
) |
|
|
st.session_state.selected_model = selected_model |
|
|
else: |
|
|
st.sidebar.warning("No models available - check Ollama connection") |
|
|
model_input = st.sidebar.text_input("Or enter model name", value=st.session_state.selected_model) |
|
|
st.session_state.selected_model = model_input |
|
|
|
|
|
st.sidebar.markdown("---") |
|
|
|
|
|
|
|
|
BASE_URL = os.environ.get("SPACE_ID", "") |
|
|
IS_HF_SPACE = bool(BASE_URL) |
|
|
|
|
|
|
|
|
def get_ollama_status(ngrok_url): |
|
|
try: |
|
|
response = requests.get( |
|
|
f"{ngrok_url}/api/tags", |
|
|
headers=NGROK_HEADERS, |
|
|
timeout=15 |
|
|
) |
|
|
if response.status_code == 200: |
|
|
models = response.json().get("models", []) |
|
|
model_names = [m.get("name") for m in models] |
|
|
st.session_state.available_models = model_names |
|
|
|
|
|
if models: |
|
|
selected_model_available = st.session_state.selected_model in model_names |
|
|
return { |
|
|
"running": True, |
|
|
"model_loaded": st.session_state.selected_model if selected_model_available else model_names[0], |
|
|
"remote_host": ngrok_url, |
|
|
"available_models": model_names, |
|
|
"selected_model_available": selected_model_available |
|
|
} |
|
|
else: |
|
|
st.session_state.model_status = "no_models" |
|
|
return { |
|
|
"running": True, |
|
|
"model_loaded": None, |
|
|
"remote_host": ngrok_url, |
|
|
"message": "Connected to Ollama but no models found" |
|
|
} |
|
|
elif response.status_code == 404: |
|
|
|
|
|
response2 = requests.get(f"{ngrok_url}", headers=NGROK_HEADERS, timeout=10) |
|
|
if response2.status_code == 200: |
|
|
st.session_state.model_status = "checking" |
|
|
return { |
|
|
"running": True, |
|
|
"model_loaded": "unknown", |
|
|
"remote_host": ngrok_url, |
|
|
"message": "Server running, endpoint check inconclusive" |
|
|
} |
|
|
else: |
|
|
st.session_state.model_status = "unreachable" |
|
|
return { |
|
|
"running": False, |
|
|
"model_loaded": None, |
|
|
"error": f"HTTP {response.status_code}", |
|
|
"remote_host": ngrok_url |
|
|
} |
|
|
else: |
|
|
st.session_state.model_status = "unreachable" |
|
|
return { |
|
|
"running": False, |
|
|
"model_loaded": None, |
|
|
"error": f"HTTP {response.status_code}", |
|
|
"remote_host": ngrok_url |
|
|
} |
|
|
except requests.exceptions.Timeout: |
|
|
st.session_state.model_status = "unreachable" |
|
|
return { |
|
|
"running": False, |
|
|
"model_loaded": None, |
|
|
"error": "Timeout - server not responding", |
|
|
"remote_host": ngrok_url |
|
|
} |
|
|
except Exception as e: |
|
|
st.session_state.model_status = "unreachable" |
|
|
return { |
|
|
"running": False, |
|
|
"model_loaded": None, |
|
|
"error": str(e), |
|
|
"remote_host": ngrok_url |
|
|
} |
|
|
|
|
|
|
|
|
def get_conversation_history(user_id): |
|
|
try: |
|
|
user_state = load_user_state(user_id) |
|
|
if user_state and "conversation" in user_state: |
|
|
return json.loads(user_state["conversation"]) |
|
|
except Exception as e: |
|
|
st.warning(f"Could not load conversation history: {e}") |
|
|
return [] |
|
|
|
|
|
|
|
|
ollama_status = get_ollama_status(st.session_state.ngrok_url) |
|
|
|
|
|
|
|
|
if ollama_status is None: |
|
|
ollama_status = { |
|
|
"running": False, |
|
|
"model_loaded": None, |
|
|
"error": "Failed to get Ollama status", |
|
|
"remote_host": st.session_state.ngrok_url |
|
|
} |
|
|
|
|
|
|
|
|
if ollama_status and ollama_status.get("running", False): |
|
|
if ollama_status.get("available_models") and len(ollama_status.get("available_models", [])) > 0: |
|
|
st.session_state.model_status = "ready" |
|
|
elif ollama_status.get("model_loaded") == "unknown": |
|
|
st.session_state.model_status = "ready" |
|
|
else: |
|
|
st.session_state.model_status = "no_models" |
|
|
else: |
|
|
st.session_state.model_status = "unreachable" |
|
|
|
|
|
|
|
|
ollama_status = ollama_status or {} |
|
|
|
|
|
|
|
|
use_fallback = not ollama_status.get("running", False) or config.use_fallback |
|
|
|
|
|
|
|
|
if use_fallback: |
|
|
st.sidebar.warning("🌐 Using Hugging Face fallback (Ollama not available)") |
|
|
|
|
|
|
|
|
if config.hf_api_url and "endpoints.huggingface.cloud" in config.hf_api_url: |
|
|
st.sidebar.info("ℹ️ HF Endpoint may be initializing (up to 4 min)") |
|
|
|
|
|
if "error" in ollama_status: |
|
|
st.sidebar.caption(f"Error: {ollama_status['error'][:50]}...") |
|
|
else: |
|
|
model_status_msg = ollama_status.get('model_loaded', 'Unknown') |
|
|
if ollama_status.get('selected_model_available', True): |
|
|
st.sidebar.success(f"🧠 Ollama Model: {model_status_msg}") |
|
|
else: |
|
|
st.sidebar.warning(f"🧠 Ollama Model: {model_status_msg} (selected model not available)") |
|
|
st.sidebar.info(f"Connected to: {ollama_status['remote_host']}") |
|
|
|
|
|
|
|
|
model_status_container = st.sidebar.empty() |
|
|
if st.session_state.model_status == "ready": |
|
|
model_status_container.success("✅ Model Ready") |
|
|
elif st.session_state.model_status == "checking": |
|
|
model_status_container.info("🔍 Checking model...") |
|
|
elif st.session_state.model_status == "no_models": |
|
|
model_status_container.warning("⚠️ No models found") |
|
|
else: |
|
|
model_status_container.error("❌ Ollama unreachable") |
|
|
|
|
|
redis_status_container = st.sidebar.empty() |
|
|
if check_redis_health(): |
|
|
redis_status_container.success("✅ Redis Connected") |
|
|
else: |
|
|
redis_status_container.warning("⚠️ Redis Not Available") |
|
|
|
|
|
|
|
|
st.title("🧘 AI Life Coach") |
|
|
st.markdown("Talk to your personal development assistant.") |
|
|
|
|
|
|
|
|
with st.expander("🔍 Connection Status"): |
|
|
st.write("Ollama Status:", ollama_status) |
|
|
st.write("Model Status:", st.session_state.model_status) |
|
|
st.write("Selected Model:", st.session_state.selected_model) |
|
|
st.write("Available Models:", st.session_state.available_models) |
|
|
st.write("Environment Info:") |
|
|
st.write("- Is HF Space:", IS_HF_SPACE) |
|
|
st.write("- Base URL:", BASE_URL or "Not in HF Space") |
|
|
st.write("- Current Ngrok URL:", st.session_state.ngrok_url) |
|
|
st.write("- Using Fallback:", use_fallback) |
|
|
st.write("- Redis Health:", check_redis_health()) |
|
|
|
|
|
|
|
|
def send_to_ollama(user_input, conversation_history, ngrok_url, model_name): |
|
|
try: |
|
|
|
|
|
payload = { |
|
|
"model": model_name, |
|
|
"messages": conversation_history, |
|
|
"stream": False, |
|
|
"options": { |
|
|
"temperature": 0.7, |
|
|
"top_p": 0.9 |
|
|
} |
|
|
} |
|
|
response = requests.post( |
|
|
f"{ngrok_url}/api/chat", |
|
|
json=payload, |
|
|
headers=NGROK_HEADERS, |
|
|
timeout=60 |
|
|
) |
|
|
if response.status_code == 200: |
|
|
response_data = response.json() |
|
|
return response_data.get("message", {}).get("content", "") |
|
|
else: |
|
|
st.error(f"Ollama API error: {response.status_code}") |
|
|
st.error(response.text[:200]) |
|
|
return None |
|
|
except Exception as e: |
|
|
st.error(f"Connection error: {e}") |
|
|
return None |
|
|
|
|
|
|
|
|
def send_to_hf(user_input, conversation_history): |
|
|
try: |
|
|
from core.llm import LLMClient |
|
|
llm_client = LLMClient(provider="huggingface") |
|
|
|
|
|
prompt = "You are a helpful life coach. " |
|
|
for msg in conversation_history: |
|
|
if msg["role"] == "user": |
|
|
prompt += f"Human: {msg['content']} " |
|
|
elif msg["role"] == "assistant": |
|
|
prompt += f"Assistant: {msg['content']} " |
|
|
prompt += "Assistant:" |
|
|
response = llm_client.generate(prompt, max_tokens=500, stream=False) |
|
|
return response |
|
|
except Exception as e: |
|
|
st.error(f"Hugging Face API error: {e}") |
|
|
return None |
|
|
|
|
|
|
|
|
conversation = get_conversation_history(user) |
|
|
for msg in conversation: |
|
|
role = msg["role"].capitalize() |
|
|
content = msg["content"] |
|
|
st.markdown(f"**{role}:** {content}") |
|
|
|
|
|
|
|
|
user_input = st.text_input("Your message...", key="input") |
|
|
if st.button("Send"): |
|
|
if user_input.strip() == "": |
|
|
st.warning("Please enter a message.") |
|
|
else: |
|
|
|
|
|
st.markdown(f"**You:** {user_input}") |
|
|
|
|
|
|
|
|
conversation_history = [{"role": msg["role"], "content": msg["content"]} for msg in conversation[-5:]] |
|
|
conversation_history.append({"role": "user", "content": user_input}) |
|
|
|
|
|
|
|
|
with st.spinner("AI Coach is thinking..."): |
|
|
if use_fallback: |
|
|
ai_response = send_to_hf(user_input, conversation_history) |
|
|
backend_used = "Hugging Face" |
|
|
else: |
|
|
ai_response = send_to_ollama( |
|
|
user_input, |
|
|
conversation_history, |
|
|
st.session_state.ngrok_url, |
|
|
st.session_state.selected_model |
|
|
) |
|
|
backend_used = "Ollama" |
|
|
|
|
|
if ai_response: |
|
|
st.markdown(f"**AI Coach ({backend_used}):** {ai_response}") |
|
|
else: |
|
|
st.error(f"Failed to get response from {backend_used}.") |
|
|
|