Fix Ollama connection issues and improve error handling for Hugging Face Spaces
Browse files- app.py +85 -22
- services/ollama_monitor.py +2 -2
- start.sh +18 -0
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
# Force redeploy trigger - version 1.
|
| 2 |
import streamlit as st
|
| 3 |
from utils.config import config
|
| 4 |
import requests
|
| 5 |
import json
|
|
|
|
| 6 |
from core.memory import load_user_state
|
| 7 |
|
| 8 |
# Set page config
|
|
@@ -13,19 +14,50 @@ st.sidebar.title("🧘 AI Life Coach")
|
|
| 13 |
user = st.sidebar.selectbox("Select User", ["Rob", "Sarah"])
|
| 14 |
st.sidebar.markdown("---")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# Fetch Ollama status
|
| 17 |
def get_ollama_status():
|
| 18 |
try:
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
"
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
if response.status_code == 200:
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# After user selects name, load conversation history
|
| 31 |
def get_conversation_history(user_id):
|
|
@@ -34,20 +66,40 @@ def get_conversation_history(user_id):
|
|
| 34 |
return json.loads(user_state["conversation"])
|
| 35 |
return []
|
| 36 |
|
|
|
|
| 37 |
ollama_status = get_ollama_status()
|
| 38 |
|
| 39 |
# Display Ollama status
|
| 40 |
if ollama_status["running"]:
|
| 41 |
st.sidebar.success(f"🧠 Model Running: {ollama_status['model_loaded']}")
|
|
|
|
| 42 |
else:
|
| 43 |
-
st.sidebar.error("🧠 Ollama is not
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# Main chat interface
|
| 46 |
st.title("🧘 AI Life Coach")
|
| 47 |
st.markdown("Talk to your personal development assistant.")
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
if not ollama_status["running"]:
|
| 50 |
-
st.warning("⚠️ Ollama is not
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
else:
|
| 52 |
# Display conversation history
|
| 53 |
conversation = get_conversation_history(user)
|
|
@@ -65,24 +117,35 @@ else:
|
|
| 65 |
# Display user message
|
| 66 |
st.markdown(f"**You:** {user_input}")
|
| 67 |
|
| 68 |
-
# Send to backend
|
| 69 |
with st.spinner("AI Coach is thinking..."):
|
| 70 |
try:
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
}
|
|
|
|
| 76 |
response = requests.post(
|
| 77 |
-
"
|
| 78 |
-
json=
|
| 79 |
-
headers=
|
|
|
|
| 80 |
)
|
|
|
|
| 81 |
if response.status_code == 200:
|
| 82 |
response_data = response.json()
|
| 83 |
-
ai_response = response_data.get("
|
| 84 |
st.markdown(f"**AI Coach:** {ai_response}")
|
|
|
|
|
|
|
| 85 |
else:
|
| 86 |
-
st.error("Failed to get response from
|
|
|
|
| 87 |
except Exception as e:
|
| 88 |
st.error(f"Connection error: {e}")
|
|
|
|
| 1 |
+
# Force redeploy trigger - version 1.2
|
| 2 |
import streamlit as st
|
| 3 |
from utils.config import config
|
| 4 |
import requests
|
| 5 |
import json
|
| 6 |
+
import os
|
| 7 |
from core.memory import load_user_state
|
| 8 |
|
| 9 |
# Set page config
|
|
|
|
| 14 |
user = st.sidebar.selectbox("Select User", ["Rob", "Sarah"])
|
| 15 |
st.sidebar.markdown("---")
|
| 16 |
|
| 17 |
+
# Get the base URL for API calls (works in Hugging Face Spaces)
|
| 18 |
+
# In HF Spaces, we need to use the same port for both frontend and backend
|
| 19 |
+
# or properly configure the backend service
|
| 20 |
+
BASE_URL = os.environ.get("SPACE_ID", "") # Will be set in HF Spaces
|
| 21 |
+
IS_HF_SPACE = bool(BASE_URL)
|
| 22 |
+
|
| 23 |
+
# Headers to skip ngrok browser warning
|
| 24 |
+
NGROK_HEADERS = {
|
| 25 |
+
"ngrok-skip-browser-warning": "true",
|
| 26 |
+
"User-Agent": "AI-Life-Coach-App"
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
# Fetch Ollama status
|
| 30 |
def get_ollama_status():
|
| 31 |
try:
|
| 32 |
+
# Try to connect to the remote Ollama service directly
|
| 33 |
+
response = requests.get(
|
| 34 |
+
f"{config.ollama_host}/api/tags",
|
| 35 |
+
headers=NGROK_HEADERS,
|
| 36 |
+
timeout=10
|
| 37 |
+
)
|
| 38 |
if response.status_code == 200:
|
| 39 |
+
models = response.json().get("models", [])
|
| 40 |
+
if models:
|
| 41 |
+
return {
|
| 42 |
+
"running": True,
|
| 43 |
+
"model_loaded": models[0].get("name"),
|
| 44 |
+
"remote_host": config.ollama_host
|
| 45 |
+
}
|
| 46 |
+
except Exception as e:
|
| 47 |
+
# If direct connection fails, show error
|
| 48 |
+
return {
|
| 49 |
+
"running": False,
|
| 50 |
+
"model_loaded": None,
|
| 51 |
+
"error": str(e),
|
| 52 |
+
"remote_host": config.ollama_host
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
# If we get here, connection worked but no models
|
| 56 |
+
return {
|
| 57 |
+
"running": False,
|
| 58 |
+
"model_loaded": None,
|
| 59 |
+
"remote_host": config.ollama_host
|
| 60 |
+
}
|
| 61 |
|
| 62 |
# After user selects name, load conversation history
|
| 63 |
def get_conversation_history(user_id):
|
|
|
|
| 66 |
return json.loads(user_state["conversation"])
|
| 67 |
return []
|
| 68 |
|
| 69 |
+
# Check Ollama status
|
| 70 |
ollama_status = get_ollama_status()
|
| 71 |
|
| 72 |
# Display Ollama status
|
| 73 |
if ollama_status["running"]:
|
| 74 |
st.sidebar.success(f"🧠 Model Running: {ollama_status['model_loaded']}")
|
| 75 |
+
st.sidebar.info(f"Connected to: {ollama_status['remote_host']}")
|
| 76 |
else:
|
| 77 |
+
st.sidebar.error("🧠 Ollama is not accessible")
|
| 78 |
+
st.sidebar.info(f"Configured host: {ollama_status['remote_host']}")
|
| 79 |
+
if "error" in ollama_status:
|
| 80 |
+
st.sidebar.caption(f"Error: {ollama_status['error']}")
|
| 81 |
|
| 82 |
# Main chat interface
|
| 83 |
st.title("🧘 AI Life Coach")
|
| 84 |
st.markdown("Talk to your personal development assistant.")
|
| 85 |
|
| 86 |
+
# Show detailed status
|
| 87 |
+
with st.expander("🔍 Connection Status"):
|
| 88 |
+
st.write("Ollama Status:", ollama_status)
|
| 89 |
+
st.write("Environment Info:")
|
| 90 |
+
st.write("- Is HF Space:", IS_HF_SPACE)
|
| 91 |
+
st.write("- Base URL:", BASE_URL or "Not in HF Space")
|
| 92 |
+
st.write("- Configured Ollama Host:", config.ollama_host)
|
| 93 |
+
|
| 94 |
if not ollama_status["running"]:
|
| 95 |
+
st.warning("⚠️ Ollama is not accessible. Please check your Ollama/ngrok setup.")
|
| 96 |
+
st.info("""
|
| 97 |
+
Troubleshooting tips:
|
| 98 |
+
1. Ensure your Ollama service is running locally
|
| 99 |
+
2. Verify your ngrok tunnel is active and pointing to Ollama (port 11434)
|
| 100 |
+
3. Check that the ngrok URL in your .env file matches your active tunnel
|
| 101 |
+
4. Confirm that your ngrok account allows connections from Hugging Face Spaces
|
| 102 |
+
""")
|
| 103 |
else:
|
| 104 |
# Display conversation history
|
| 105 |
conversation = get_conversation_history(user)
|
|
|
|
| 117 |
# Display user message
|
| 118 |
st.markdown(f"**You:** {user_input}")
|
| 119 |
|
| 120 |
+
# Send to Ollama directly (bypassing backend for simplicity)
|
| 121 |
with st.spinner("AI Coach is thinking..."):
|
| 122 |
try:
|
| 123 |
+
# Prepare the prompt with conversation history
|
| 124 |
+
conversation_history = [{"role": msg["role"], "content": msg["content"]}
|
| 125 |
+
for msg in conversation[-5:]] # Last 5 messages
|
| 126 |
+
conversation_history.append({"role": "user", "content": user_input})
|
| 127 |
+
|
| 128 |
+
payload = {
|
| 129 |
+
"model": config.local_model_name,
|
| 130 |
+
"messages": conversation_history,
|
| 131 |
+
"stream": False
|
| 132 |
}
|
| 133 |
+
|
| 134 |
response = requests.post(
|
| 135 |
+
f"{config.ollama_host}/api/chat",
|
| 136 |
+
json=payload,
|
| 137 |
+
headers=NGROK_HEADERS,
|
| 138 |
+
timeout=60
|
| 139 |
)
|
| 140 |
+
|
| 141 |
if response.status_code == 200:
|
| 142 |
response_data = response.json()
|
| 143 |
+
ai_response = response_data.get("message", {}).get("content", "")
|
| 144 |
st.markdown(f"**AI Coach:** {ai_response}")
|
| 145 |
+
|
| 146 |
+
# Note: In a production app, we'd save the conversation to Redis here
|
| 147 |
else:
|
| 148 |
+
st.error(f"Failed to get response from Ollama: {response.status_code}")
|
| 149 |
+
st.error(response.text[:200])
|
| 150 |
except Exception as e:
|
| 151 |
st.error(f"Connection error: {e}")
|
services/ollama_monitor.py
CHANGED
|
@@ -14,7 +14,7 @@ def check_ollama_status():
|
|
| 14 |
"local_url": "http://localhost:11434/"
|
| 15 |
}
|
| 16 |
"""
|
| 17 |
-
ngrok_url =
|
| 18 |
local_url = "http://localhost:11434/" # Always check localhost as fallback
|
| 19 |
|
| 20 |
def _get_model_from_url(base_url, retries=3, delay=1):
|
|
@@ -26,7 +26,7 @@ def check_ollama_status():
|
|
| 26 |
"ngrok-skip-browser-warning": "true",
|
| 27 |
"User-Agent": "AI-Life-Coach-App"
|
| 28 |
}
|
| 29 |
-
response = requests.get(f"{base_url}/api/tags", timeout=
|
| 30 |
if response.status_code == 200:
|
| 31 |
models = response.json().get("models", [])
|
| 32 |
if models:
|
|
|
|
| 14 |
"local_url": "http://localhost:11434/"
|
| 15 |
}
|
| 16 |
"""
|
| 17 |
+
ngrok_url = config.ollama_host # Use configured host
|
| 18 |
local_url = "http://localhost:11434/" # Always check localhost as fallback
|
| 19 |
|
| 20 |
def _get_model_from_url(base_url, retries=3, delay=1):
|
|
|
|
| 26 |
"ngrok-skip-browser-warning": "true",
|
| 27 |
"User-Agent": "AI-Life-Coach-App"
|
| 28 |
}
|
| 29 |
+
response = requests.get(f"{base_url}/api/tags", timeout=10, headers=headers)
|
| 30 |
if response.status_code == 200:
|
| 31 |
models = response.json().get("models", [])
|
| 32 |
if models:
|
start.sh
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
echo "Starting AI Life Coach..."
|
| 4 |
+
|
| 5 |
+
# Start FastAPI backend in background
|
| 6 |
+
echo "Starting FastAPI backend..."
|
| 7 |
+
uvicorn api.main:app --host 0.0.0.0 --port 8000 &
|
| 8 |
+
BACKEND_PID=0
|
| 9 |
+
|
| 10 |
+
# Give backend a moment to start
|
| 11 |
+
sleep 3
|
| 12 |
+
|
| 13 |
+
# Start Streamlit frontend
|
| 14 |
+
echo "Starting Streamlit frontend..."
|
| 15 |
+
streamlit run app.py --server.port 8501 --server.address 0.0.0.0
|
| 16 |
+
|
| 17 |
+
# Kill backend when Streamlit exits
|
| 18 |
+
kill
|