Implement circuit breaker pattern and enhanced fallback logic
Browse files- src/llm/base_provider.py +66 -1
- src/llm/factory.py +64 -31
- src/llm/hf_provider.py +23 -6
- src/llm/ollama_provider.py +10 -2
src/llm/base_provider.py
CHANGED
|
@@ -1,13 +1,23 @@
|
|
|
|
|
|
|
|
| 1 |
from abc import ABC, abstractmethod
|
| 2 |
from typing import List, Dict, Optional, Union
|
| 3 |
|
|
|
|
|
|
|
| 4 |
class LLMProvider(ABC):
|
| 5 |
-
"""Abstract base class for all LLM providers"""
|
| 6 |
|
| 7 |
def __init__(self, model_name: str, timeout: int = 30, max_retries: int = 3):
|
| 8 |
self.model_name = model_name
|
| 9 |
self.timeout = timeout
|
| 10 |
self.max_retries = max_retries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
@abstractmethod
|
| 13 |
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
|
|
@@ -18,3 +28,58 @@ class LLMProvider(ABC):
|
|
| 18 |
def stream_generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[Union[str, List[str]]]:
|
| 19 |
"""Generate a response with streaming support"""
|
| 20 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import logging
|
| 3 |
from abc import ABC, abstractmethod
|
| 4 |
from typing import List, Dict, Optional, Union
|
| 5 |
|
| 6 |
+
logger = logging.getLogger(__name__)
|
| 7 |
+
|
| 8 |
class LLMProvider(ABC):
|
| 9 |
+
"""Abstract base class for all LLM providers with circuit breaker"""
|
| 10 |
|
| 11 |
def __init__(self, model_name: str, timeout: int = 30, max_retries: int = 3):
|
| 12 |
self.model_name = model_name
|
| 13 |
self.timeout = timeout
|
| 14 |
self.max_retries = max_retries
|
| 15 |
+
|
| 16 |
+
# Circuit breaker properties
|
| 17 |
+
self.failure_count = 0
|
| 18 |
+
self.last_failure_time = None
|
| 19 |
+
self.circuit_open = False
|
| 20 |
+
self.reset_timeout = 60 # Reset circuit after 60 seconds
|
| 21 |
|
| 22 |
@abstractmethod
|
| 23 |
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
|
|
|
|
| 28 |
def stream_generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[Union[str, List[str]]]:
|
| 29 |
"""Generate a response with streaming support"""
|
| 30 |
pass
|
| 31 |
+
|
| 32 |
+
def _check_circuit_breaker(self) -> bool:
|
| 33 |
+
"""Check if circuit breaker is open (preventing calls)"""
|
| 34 |
+
if not self.circuit_open:
|
| 35 |
+
return True
|
| 36 |
+
|
| 37 |
+
# Check if enough time has passed to reset
|
| 38 |
+
if self.last_failure_time and (time.time() - self.last_failure_time) > self.reset_timeout:
|
| 39 |
+
logger.info("Circuit breaker reset - allowing call")
|
| 40 |
+
self.circuit_open = False
|
| 41 |
+
self.failure_count = 0
|
| 42 |
+
return True
|
| 43 |
+
|
| 44 |
+
logger.warning("Circuit breaker is OPEN - preventing call")
|
| 45 |
+
return False
|
| 46 |
+
|
| 47 |
+
def _handle_failure(self, error: Exception):
|
| 48 |
+
"""Handle failure and update circuit breaker"""
|
| 49 |
+
self.failure_count += 1
|
| 50 |
+
self.last_failure_time = time.time()
|
| 51 |
+
|
| 52 |
+
# Open circuit after 3 failures
|
| 53 |
+
if self.failure_count >= 3:
|
| 54 |
+
self.circuit_open = True
|
| 55 |
+
logger.warning(f"Circuit breaker OPEN for {self.__class__.__name__} after {self.failure_count} failures")
|
| 56 |
+
|
| 57 |
+
raise error
|
| 58 |
+
|
| 59 |
+
def _retry_with_backoff(self, func, *args, **kwargs):
|
| 60 |
+
"""Retry logic with exponential backoff"""
|
| 61 |
+
last_exception = None
|
| 62 |
+
|
| 63 |
+
for attempt in range(self.max_retries):
|
| 64 |
+
try:
|
| 65 |
+
if not self._check_circuit_breaker():
|
| 66 |
+
raise Exception("Circuit breaker is open")
|
| 67 |
+
|
| 68 |
+
result = func(*args, **kwargs)
|
| 69 |
+
# Reset failure count on success
|
| 70 |
+
self.failure_count = 0
|
| 71 |
+
self.circuit_open = False
|
| 72 |
+
return result
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
last_exception = e
|
| 76 |
+
self._handle_failure(e)
|
| 77 |
+
|
| 78 |
+
if attempt < self.max_retries - 1:
|
| 79 |
+
sleep_time = min((2 ** attempt) * 1.0, 10.0) # Cap at 10 seconds
|
| 80 |
+
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}. Retrying in {sleep_time}s...")
|
| 81 |
+
time.sleep(sleep_time)
|
| 82 |
+
else:
|
| 83 |
+
logger.error(f"All {self.max_retries} attempts failed. Last error: {str(e)}")
|
| 84 |
+
|
| 85 |
+
raise last_exception
|
src/llm/factory.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import logging
|
| 2 |
-
from typing import Optional
|
| 3 |
from src.llm.base_provider import LLMProvider
|
| 4 |
from src.llm.hf_provider import HuggingFaceProvider
|
| 5 |
from src.llm.ollama_provider import OllamaProvider
|
|
@@ -12,7 +12,7 @@ class ProviderNotAvailableError(Exception):
|
|
| 12 |
pass
|
| 13 |
|
| 14 |
class LLMFactory:
|
| 15 |
-
"""Factory for creating LLM providers with fallback
|
| 16 |
|
| 17 |
_instance = None
|
| 18 |
|
|
@@ -34,44 +34,77 @@ class LLMFactory:
|
|
| 34 |
Raises:
|
| 35 |
ProviderNotAvailableError: When no providers are available
|
| 36 |
"""
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
try:
|
| 40 |
-
return HuggingFaceProvider(
|
| 41 |
-
model_name="DavidAU/OpenAi-GPT-oss-20b-abliterated-uncensored-NEO-Imatrix-gguf"
|
| 42 |
-
)
|
| 43 |
-
except Exception as e:
|
| 44 |
-
logger.warning(f"Failed to initialize HF provider: {e}")
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
-
logger.warning(f"Failed to initialize
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
if config.use_fallback:
|
| 56 |
-
#
|
| 57 |
if config.hf_token:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
logger.warning(f"Failed to initialize HF provider: {e}")
|
| 64 |
|
| 65 |
-
#
|
| 66 |
if config.ollama_host:
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
# Global factory instance
|
| 77 |
llm_factory = LLMFactory()
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from typing import Optional, List
|
| 3 |
from src.llm.base_provider import LLMProvider
|
| 4 |
from src.llm.hf_provider import HuggingFaceProvider
|
| 5 |
from src.llm.ollama_provider import OllamaProvider
|
|
|
|
| 12 |
pass
|
| 13 |
|
| 14 |
class LLMFactory:
|
| 15 |
+
"""Factory for creating LLM providers with intelligent fallback"""
|
| 16 |
|
| 17 |
_instance = None
|
| 18 |
|
|
|
|
| 34 |
Raises:
|
| 35 |
ProviderNotAvailableError: When no providers are available
|
| 36 |
"""
|
| 37 |
+
# Build provider chain based on configuration and preference
|
| 38 |
+
provider_chain = self._build_provider_chain(preferred_provider)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Try providers in order
|
| 41 |
+
for provider_name, provider_class, model_name in provider_chain:
|
| 42 |
try:
|
| 43 |
+
logger.info(f"Attempting to initialize {provider_name} provider...")
|
| 44 |
+
provider = provider_class(model_name=model_name)
|
| 45 |
+
# Test that provider is working
|
| 46 |
+
if self._test_provider(provider):
|
| 47 |
+
logger.info(f"Successfully initialized {provider_name} provider")
|
| 48 |
+
return provider
|
| 49 |
+
else:
|
| 50 |
+
logger.warning(f"{provider_name} provider failed validation test")
|
| 51 |
except Exception as e:
|
| 52 |
+
logger.warning(f"Failed to initialize {provider_name} provider: {e}")
|
| 53 |
+
continue
|
| 54 |
+
|
| 55 |
+
raise ProviderNotAvailableError("No LLM providers are available or configured")
|
| 56 |
|
| 57 |
+
def _build_provider_chain(self, preferred_provider: Optional[str]) -> List[tuple]:
|
| 58 |
+
"""Build provider chain based on preference and configuration"""
|
| 59 |
+
chain = []
|
| 60 |
+
|
| 61 |
+
# Add preferred provider first if specified
|
| 62 |
+
if preferred_provider:
|
| 63 |
+
provider_info = self._get_provider_info(preferred_provider)
|
| 64 |
+
if provider_info:
|
| 65 |
+
chain.append(provider_info)
|
| 66 |
+
|
| 67 |
+
# Add fallback providers based on configuration
|
| 68 |
if config.use_fallback:
|
| 69 |
+
# Add HF if configured
|
| 70 |
if config.hf_token:
|
| 71 |
+
chain.append((
|
| 72 |
+
"huggingface",
|
| 73 |
+
HuggingFaceProvider,
|
| 74 |
+
"DavidAU/OpenAi-GPT-oss-20b-abliterated-uncensored-NEO-Imatrix-gguf"
|
| 75 |
+
))
|
|
|
|
| 76 |
|
| 77 |
+
# Add Ollama if configured
|
| 78 |
if config.ollama_host:
|
| 79 |
+
chain.append((
|
| 80 |
+
"ollama",
|
| 81 |
+
OllamaProvider,
|
| 82 |
+
config.local_model_name
|
| 83 |
+
))
|
| 84 |
+
|
| 85 |
+
return chain
|
| 86 |
|
| 87 |
+
def _get_provider_info(self, provider_name: str) -> Optional[tuple]:
|
| 88 |
+
"""Get provider class and model info"""
|
| 89 |
+
provider_map = {
|
| 90 |
+
"huggingface": (
|
| 91 |
+
"huggingface",
|
| 92 |
+
HuggingFaceProvider,
|
| 93 |
+
"DavidAU/OpenAi-GPT-oss-20b-abliterated-uncensored-NEO-Imatrix-gguf"
|
| 94 |
+
),
|
| 95 |
+
"ollama": (
|
| 96 |
+
"ollama",
|
| 97 |
+
OllamaProvider,
|
| 98 |
+
config.local_model_name
|
| 99 |
+
)
|
| 100 |
+
}
|
| 101 |
+
return provider_map.get(provider_name)
|
| 102 |
+
|
| 103 |
+
def _test_provider(self, provider: LLMProvider) -> bool:
|
| 104 |
+
"""Test if provider is working (stub implementation)"""
|
| 105 |
+
# In a real implementation, you might want to do a lightweight test
|
| 106 |
+
# For now, we'll assume initialization success means it's working
|
| 107 |
+
return True
|
| 108 |
|
| 109 |
# Global factory instance
|
| 110 |
llm_factory = LLMFactory()
|
src/llm/hf_provider.py
CHANGED
|
@@ -34,6 +34,14 @@ class HuggingFaceProvider(LLMProvider):
|
|
| 34 |
|
| 35 |
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
|
| 36 |
"""Generate a response synchronously"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
response = self.client.chat.completions.create(
|
| 39 |
model=self.model_name,
|
|
@@ -44,9 +52,8 @@ class HuggingFaceProvider(LLMProvider):
|
|
| 44 |
)
|
| 45 |
return response.choices[0].message.content
|
| 46 |
except Exception as e:
|
| 47 |
-
logger.error(f"HF generation failed: {e}")
|
| 48 |
# Handle scale-to-zero behavior
|
| 49 |
-
if
|
| 50 |
logger.info("HF endpoint is scaling up, waiting...")
|
| 51 |
time.sleep(60) # Wait for endpoint to initialize
|
| 52 |
# Retry once
|
|
@@ -60,8 +67,8 @@ class HuggingFaceProvider(LLMProvider):
|
|
| 60 |
return response.choices[0].message.content
|
| 61 |
raise
|
| 62 |
|
| 63 |
-
def
|
| 64 |
-
"""
|
| 65 |
try:
|
| 66 |
response = self.client.chat.completions.create(
|
| 67 |
model=self.model_name,
|
|
@@ -78,9 +85,8 @@ class HuggingFaceProvider(LLMProvider):
|
|
| 78 |
chunks.append(content)
|
| 79 |
return chunks
|
| 80 |
except Exception as e:
|
| 81 |
-
logger.error(f"HF stream generation failed: {e}")
|
| 82 |
# Handle scale-to-zero behavior
|
| 83 |
-
if
|
| 84 |
logger.info("HF endpoint is scaling up, waiting...")
|
| 85 |
time.sleep(60) # Wait for endpoint to initialize
|
| 86 |
# Retry once
|
|
@@ -99,3 +105,14 @@ class HuggingFaceProvider(LLMProvider):
|
|
| 99 |
chunks.append(content)
|
| 100 |
return chunks
|
| 101 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
|
| 36 |
"""Generate a response synchronously"""
|
| 37 |
+
return self._retry_with_backoff(self._generate_impl, prompt, conversation_history)
|
| 38 |
+
|
| 39 |
+
def stream_generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[Union[str, List[str]]]:
|
| 40 |
+
"""Generate a response with streaming support"""
|
| 41 |
+
return self._retry_with_backoff(self._stream_generate_impl, prompt, conversation_history)
|
| 42 |
+
|
| 43 |
+
def _generate_impl(self, prompt: str, conversation_history: List[Dict]) -> str:
|
| 44 |
+
"""Implementation of synchronous generation"""
|
| 45 |
try:
|
| 46 |
response = self.client.chat.completions.create(
|
| 47 |
model=self.model_name,
|
|
|
|
| 52 |
)
|
| 53 |
return response.choices[0].message.content
|
| 54 |
except Exception as e:
|
|
|
|
| 55 |
# Handle scale-to-zero behavior
|
| 56 |
+
if self._is_scale_to_zero_error(e):
|
| 57 |
logger.info("HF endpoint is scaling up, waiting...")
|
| 58 |
time.sleep(60) # Wait for endpoint to initialize
|
| 59 |
# Retry once
|
|
|
|
| 67 |
return response.choices[0].message.content
|
| 68 |
raise
|
| 69 |
|
| 70 |
+
def _stream_generate_impl(self, prompt: str, conversation_history: List[Dict]) -> List[str]:
|
| 71 |
+
"""Implementation of streaming generation"""
|
| 72 |
try:
|
| 73 |
response = self.client.chat.completions.create(
|
| 74 |
model=self.model_name,
|
|
|
|
| 85 |
chunks.append(content)
|
| 86 |
return chunks
|
| 87 |
except Exception as e:
|
|
|
|
| 88 |
# Handle scale-to-zero behavior
|
| 89 |
+
if self._is_scale_to_zero_error(e):
|
| 90 |
logger.info("HF endpoint is scaling up, waiting...")
|
| 91 |
time.sleep(60) # Wait for endpoint to initialize
|
| 92 |
# Retry once
|
|
|
|
| 105 |
chunks.append(content)
|
| 106 |
return chunks
|
| 107 |
raise
|
| 108 |
+
|
| 109 |
+
def _is_scale_to_zero_error(self, error: Exception) -> bool:
|
| 110 |
+
"""Check if the error is related to scale-to-zero initialization"""
|
| 111 |
+
error_str = str(error).lower()
|
| 112 |
+
scale_to_zero_indicators = [
|
| 113 |
+
"503",
|
| 114 |
+
"service unavailable",
|
| 115 |
+
"initializing",
|
| 116 |
+
"cold start"
|
| 117 |
+
]
|
| 118 |
+
return any(indicator in error_str for indicator in scale_to_zero_indicators)
|
src/llm/ollama_provider.py
CHANGED
|
@@ -30,6 +30,14 @@ class OllamaProvider(LLMProvider):
|
|
| 30 |
|
| 31 |
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
|
| 32 |
"""Generate a response synchronously"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
try:
|
| 34 |
url = f"{self.host}/api/chat"
|
| 35 |
payload = {
|
|
@@ -51,8 +59,8 @@ class OllamaProvider(LLMProvider):
|
|
| 51 |
logger.error(f"Ollama generation failed: {e}")
|
| 52 |
raise
|
| 53 |
|
| 54 |
-
def
|
| 55 |
-
"""
|
| 56 |
try:
|
| 57 |
url = f"{self.host}/api/chat"
|
| 58 |
payload = {
|
|
|
|
| 30 |
|
| 31 |
def generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[str]:
|
| 32 |
"""Generate a response synchronously"""
|
| 33 |
+
return self._retry_with_backoff(self._generate_impl, prompt, conversation_history)
|
| 34 |
+
|
| 35 |
+
def stream_generate(self, prompt: str, conversation_history: List[Dict]) -> Optional[Union[str, List[str]]]:
|
| 36 |
+
"""Generate a response with streaming support"""
|
| 37 |
+
return self._retry_with_backoff(self._stream_generate_impl, prompt, conversation_history)
|
| 38 |
+
|
| 39 |
+
def _generate_impl(self, prompt: str, conversation_history: List[Dict]) -> str:
|
| 40 |
+
"""Implementation of synchronous generation"""
|
| 41 |
try:
|
| 42 |
url = f"{self.host}/api/chat"
|
| 43 |
payload = {
|
|
|
|
| 59 |
logger.error(f"Ollama generation failed: {e}")
|
| 60 |
raise
|
| 61 |
|
| 62 |
+
def _stream_generate_impl(self, prompt: str, conversation_history: List[Dict]) -> List[str]:
|
| 63 |
+
"""Implementation of streaming generation"""
|
| 64 |
try:
|
| 65 |
url = f"{self.host}/api/chat"
|
| 66 |
payload = {
|