File size: 6,450 Bytes
742b2a5
d5f869d
53eb1ca
742b2a5
 
 
 
 
8c5cf5d
d5f869d
53eb1ca
 
742b2a5
53eb1ca
 
 
 
 
 
 
92eb899
4a45067
53eb1ca
 
4a45067
53eb1ca
 
 
4a45067
53eb1ca
 
 
 
4a45067
53eb1ca
 
 
 
 
 
 
 
 
 
4a45067
92eb899
53eb1ca
 
 
 
4a45067
53eb1ca
 
 
 
4a45067
53eb1ca
 
 
882318e
4a45067
882318e
 
 
 
 
 
53eb1ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b8aba9
53eb1ca
 
92eb899
53eb1ca
 
92eb899
53eb1ca
 
 
 
 
92eb899
53eb1ca
 
 
 
 
 
 
142a635
53eb1ca
 
 
 
 
 
4a45067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53eb1ca
 
4a45067
53eb1ca
742b2a5
 
4a45067
742b2a5
 
 
 
 
 
 
 
 
e2a70cb
742b2a5
92eb899
742b2a5
 
 
4a45067
 
 
742b2a5
 
 
 
 
 
 
37c8f0a
 
742b2a5
 
 
 
0b8aba9
 
742b2a5
 
 
 
064a3e4
8c5cf5d
 
92eb899
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# app.py
import gradio as gr
import logging
from modules.input_handler import InputHandler
from modules.retriever import Retriever
from modules.analyzer import Analyzer
from modules.citation import CitationManager
from modules.formatter import OutputFormatter
import os

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

class ResearchOrchestrator:
    def __init__(self, input_handler, retriever, analyzer, citation_manager, formatter):
        self.input_handler = input_handler
        self.retriever = retriever
        self.analyzer = analyzer
        self.citation_manager = citation_manager
        self.formatter = formatter

    def run(self, query, progress=gr.Progress()):
        """Execute the research pipeline with streaming updates"""
        try:
            progress(0.0, desc="Starting research...")
            logging.info(f"Starting research for query: {query}")
            
            # Step 1: Process input
            progress(0.1, desc="🔍 Processing your query...")
            processed_query = self.input_handler.process_query(query)
            logging.info("Query processed successfully")
            
            # Step 2: Retrieve data
            progress(0.3, desc="🌐 Searching for relevant information...")
            search_results = self.retriever.search(processed_query)
            
            if not search_results:
                yield "⚠️ No relevant information found for your query. Please try rephrasing."
                logging.warning("No search results found")
                return
            
            logging.info(f"Retrieved {len(search_results)} results")
            
            # Step 3: Analyze content
            progress(0.5, desc="🧠 Analyzing search results...")
            yield "🧠 Analyzing search results...\n\n⏳ The AI model may be initializing. This could take a few minutes if it's the first request..."
            analysis = self.analyzer.analyze(query, search_results)
            logging.info("Analysis completed")
            
            # Step 4: Manage citations
            progress(0.8, desc="📎 Adding citations...")
            cited_analysis = self.citation_manager.add_citations(analysis, search_results)
            logging.info("Citations added")
            
            # Step 5: Format output
            progress(0.9, desc="✨ Formatting response...")
            formatted_output = self.formatter.format_response(cited_analysis, search_results)
            logging.info("Response formatted successfully")
            
            # Add completion notification
            progress(1.0, desc="✅ Research complete!")
            if len(search_results) >= 3:
                completion_message = "\n\n---\n[ANALYSIS COMPLETE] ✅ Research finished with sufficient sources."
            else:
                completion_message = "\n\n---\n[RECOMMEND FURTHER ANALYSIS] ⚠️ Limited sources found. Consider refining your query."
            
            yield formatted_output + completion_message
            
        except Exception as e:
            error_msg = f"❌ An error occurred: {str(e)}"
            logging.error(f"Error in research pipeline: {str(e)}", exc_info=True)
            yield error_msg

# Configuration
CONFIG = {
    "hf_api_base": "https://zxzbfrlg3ssrk7d9.us-east-1.aws.endpoints.huggingface.cloud/v1/",
    "hf_api_key": os.getenv("HF_TOKEN"),
    "tavily_api_key": os.getenv("TAVILY_API_KEY"),
}

# Initialize modules with error handling
def initialize_modules():
    """Initialize all modules with proper error handling"""
    try:
        if not CONFIG["tavily_api_key"]:
            raise ValueError("TAVILY_API_KEY environment variable is not set")

        if not CONFIG["hf_api_key"]:
            raise ValueError("HF_TOKEN environment variable is not set")

        input_handler = InputHandler()
        retriever = Retriever(api_key=CONFIG["tavily_api_key"])
        analyzer = Analyzer(base_url=CONFIG["hf_api_base"], api_key=CONFIG["hf_api_key"])
        citation_manager = CitationManager()
        formatter = OutputFormatter()

        return ResearchOrchestrator(
            input_handler, 
            retriever, 
            analyzer, 
            citation_manager, 
            formatter
        )
    except Exception as e:
        logging.error(f"Failed to initialize modules: {str(e)}")
        raise

# Initialize orchestrator
orchestrator = initialize_modules()

# Custom CSS for spinner
custom_css = """
.spinner {
  border: 4px solid #f3f3f3;
  border-top: 4px solid #3498db;
  border-radius: 50%;
  width: 24px;
  height: 24px;
  animation: spin 1s linear infinite;
  display: inline-block;
  margin-right: 8px;
}
@keyframes spin {
  0% { transform: rotate(0deg); }
  100% { transform: rotate(360deg); }
}
"""

def research_assistant(query, progress=gr.Progress()):
    """Main entry point for the research assistant with streaming"""
    logging.info(f"Research assistant called with query: {query}")
    for step in orchestrator.run(query, progress):
        yield step

# Create Gradio interface
with gr.Blocks(css=custom_css, title="Research Assistant") as demo:
    gr.Markdown("# 🧠 AI Research Assistant")
    gr.Markdown("Enter a research topic to get a structured analysis with sources")
    
    with gr.Row():
        with gr.Column():
            query_input = gr.Textbox(
                label="Research Query",
                placeholder="Enter your research question...",
                lines=3
            )
            submit_btn = gr.Button("Research", variant="primary")
            
        with gr.Column():
            output = gr.Markdown(label="Analysis Results")
    
    # Status indicator with spinner
    status_indicator = gr.HTML("<div id='status'><span class='spinner'></span> Ready for your research query</div>")
    
    examples = gr.Examples(
        examples=[
            "Latest advancements in quantum computing",
            "Impact of climate change on global agriculture",
            "Recent developments in Alzheimer's treatment research"
        ],
        inputs=query_input
    )
    
    submit_btn.click(
        fn=research_assistant,
        inputs=query_input,
        outputs=output
    )
    
    query_input.submit(
        fn=research_assistant,
        inputs=query_input,
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()