Spaces:
Sleeping
Sleeping
| import os | |
| import numpy as np | |
| import pandas as pd | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| from datetime import datetime | |
| REPORT_DIR = f"cleaning_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}" | |
| os.makedirs(REPORT_DIR, exist_ok=True) | |
| def save_plot(fig, filename): | |
| fig.savefig(os.path.join(REPORT_DIR, filename), dpi=400, bbox_inches='tight') | |
| plt.close(fig) | |
| def plot_heatmap(df, title): | |
| plt.figure(figsize=(12, 8)) | |
| sns.heatmap(df.isnull(), cbar=False, cmap='viridis') | |
| plt.title(title) | |
| plt.tight_layout() | |
| save_plot(plt.gcf(), f'{title.lower().replace(" ", "_")}.png') | |
| def plot_valid_data_percentage(original_df, cleaned_df): | |
| original_valid = (original_df.notna().sum() / len(original_df)) * 100 | |
| cleaned_valid = (cleaned_df.notna().sum() / len(cleaned_df)) * 100 | |
| # Create a DataFrame with both original and cleaned percentages | |
| combined_df = pd.DataFrame({ | |
| 'Original': original_valid, | |
| 'Cleaned': cleaned_valid | |
| }).fillna(0) # Fill NaN with 0 for columns that were removed | |
| plt.figure(figsize=(15, 8)) | |
| combined_df.plot(kind='bar', width=0.8, alpha=0.8) | |
| plt.xlabel('Columns') | |
| plt.ylabel('Percentage of Valid Data') | |
| plt.title('Percentage of Valid Data Before and After Cleaning') | |
| plt.xticks(rotation=90) | |
| plt.legend(['Before Cleaning', 'After Cleaning']) | |
| # Add percentage labels on the bars | |
| for i, (index, row) in enumerate(combined_df.iterrows()): | |
| plt.text(i, row['Original'], f'{row["Original"]:.1f}%', ha='center', va='bottom') | |
| if row['Cleaned'] > 0: # Only add label if column exists in cleaned data | |
| plt.text(i, row['Cleaned'], f'{row["Cleaned"]:.1f}%', ha='center', va='bottom') | |
| plt.tight_layout() | |
| plt.savefig(os.path.join(REPORT_DIR, 'valid_data_percentage.png')) | |
| plt.close() | |
| def plot_column_schemas(df): | |
| schemas = df.dtypes.astype(str).value_counts() | |
| fig, ax = plt.subplots(figsize=(10, 6)) | |
| sns.barplot(x=schemas.index, y=schemas.values, ax=ax) | |
| ax.set_title('Column Data Types') | |
| ax.set_xlabel('Data Type') | |
| ax.set_ylabel('Count') | |
| save_plot(fig, 'column_schemas.png') | |
| def plot_nonconforming_cells(nonconforming_cells): | |
| # Ensure that nonconforming_cells is a dictionary | |
| if isinstance(nonconforming_cells, dict): | |
| # Proceed with plotting if it's a dictionary | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| sns.barplot(x=list(nonconforming_cells.keys()), y=list(nonconforming_cells.values()), ax=ax) | |
| ax.set_title('Nonconforming Cells by Column') | |
| ax.set_xlabel('Columns') | |
| ax.set_ylabel('Number of Nonconforming Cells') | |
| plt.xticks(rotation=90) | |
| save_plot(fig, 'nonconforming_cells.png') | |
| else: | |
| print(f"Expected nonconforming_cells to be a dictionary, but got {type(nonconforming_cells)}.") | |
| def plot_column_distributions(original_df, cleaned_df): | |
| numeric_columns = original_df.select_dtypes(include=[np.number]).columns | |
| num_columns = len(numeric_columns) | |
| if num_columns == 0: | |
| print("No numeric columns found for distribution plots.") | |
| return | |
| # Create subplots for distributions | |
| fig, axes = plt.subplots(nrows=(num_columns + 2) // 3, ncols=3, figsize=(18, 5 * ((num_columns + 2) // 3))) | |
| axes = axes.flatten() if num_columns > 1 else [axes] | |
| for i, column in enumerate(numeric_columns): | |
| if column in cleaned_df.columns: | |
| sns.histplot(original_df[column].dropna(), ax=axes[i], kde=True, color='blue', label='Before Cleaning', alpha=0.5) | |
| sns.histplot(cleaned_df[column].dropna(), ax=axes[i], kde=True, color='orange', label='After Cleaning', alpha=0.5) | |
| axes[i].set_title(f'{column} - Distribution Before & After Cleaning') | |
| axes[i].legend() | |
| # Remove any unused subplots | |
| for j in range(i + 1, len(axes)): | |
| fig.delaxes(axes[j]) | |
| plt.tight_layout() | |
| save_plot(fig, 'distributions_before_after_cleaning.png') | |
| def plot_boxplot_with_outliers(df): | |
| print("Plotting boxplots with outliers...") | |
| numeric_columns = df.select_dtypes(include=[np.number]).columns | |
| num_columns = len(numeric_columns) | |
| if num_columns == 0: | |
| print("No numeric columns found for boxplot.") | |
| return | |
| # Create subplots based on the number of numeric columns | |
| fig, axes = plt.subplots(nrows=(num_columns + 2) // 3, ncols=3, figsize=(15, 5 * ((num_columns + 2) // 3))) | |
| axes = axes.flatten() if num_columns > 1 else [axes] | |
| for i, column in enumerate(numeric_columns): | |
| sns.boxplot(x=df[column], ax=axes[i]) | |
| axes[i].set_title(f'Boxplot of {column} with Outliers') | |
| # Remove any unused subplots | |
| for j in range(i + 1, len(axes)): | |
| fig.delaxes(axes[j]) | |
| plt.tight_layout() | |
| save_plot(fig, 'boxplots_with_outliers.png') | |
| def plot_correlation_heatmap(df): | |
| # Select only numeric, float, and integer columns | |
| numeric_df = df.select_dtypes(include=[np.number]) | |
| # Compute the correlation matrix | |
| correlation_matrix = numeric_df.corr() | |
| # Plot the heatmap | |
| fig, ax = plt.subplots(figsize=(15, 10)) | |
| sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', ax=ax, cbar_kws={'label': 'Correlation'}) | |
| ax.set_title('Correlation Heatmap') | |
| save_plot(fig, 'correlation_heatmap.png') | |
| def plot_process_times(process_times): | |
| # Convert seconds to minutes | |
| process_times_minutes = {k: v / 60 for k, v in process_times.items()} | |
| # Separate main processes and column cleaning processes | |
| main_processes = {k: v for k, v in process_times_minutes.items() if not k.startswith("Clean column:")} | |
| column_processes = {k: v for k, v in process_times_minutes.items() if k.startswith("Clean column:")} | |
| # Create the plot | |
| fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(15, 10)) | |
| # Plot main processes | |
| bars1 = ax1.bar(main_processes.keys(), main_processes.values()) | |
| ax1.set_title('Main Process Times') | |
| ax1.set_ylabel('Time (minutes)') | |
| ax1.tick_params(axis='x', rotation=45) | |
| # Plot column cleaning processes | |
| bars2 = ax2.bar(column_processes.keys(), column_processes.values()) | |
| ax2.set_title('Column Cleaning Times') | |
| ax2.set_ylabel('Time (minutes)') | |
| ax2.tick_params(axis='x', rotation=90) | |
| # Add value labels on top of each bar | |
| for ax, bars in zip([ax1, ax2], [bars1, bars2]): | |
| for bar in bars: | |
| height = bar.get_height() | |
| ax.text(bar.get_x() + bar.get_width() / 2., height, | |
| f'{height:.2f}', ha='center', va='bottom') | |
| # Add total time to the plot | |
| total_time = sum(process_times_minutes.values()) | |
| fig.suptitle(f'Process Times (Total: {total_time:.2f} minutes)', fontsize=16) | |
| plt.tight_layout() | |
| save_plot(fig, 'process_times.png') | |
| def create_full_report(original_df, cleaned_df, nonconforming_cells_before, process_times, removed_columns, removed_rows): | |
| os.makedirs(REPORT_DIR, exist_ok=True) | |
| sns.set_style("whitegrid") | |
| plt.rcParams['figure.dpi'] = 400 | |
| print("Plotting valid data percentages...") | |
| plot_valid_data_percentage(original_df, cleaned_df) | |
| print("Plotting column schemas...") | |
| plot_column_schemas(cleaned_df) | |
| print("Plotting nonconforming cells before cleaning...") | |
| plot_nonconforming_cells(nonconforming_cells_before) | |
| print("Plotting column distributions...") | |
| plot_column_distributions(original_df, cleaned_df) | |
| print("Plotting process times...") | |
| plot_process_times(process_times) | |
| print("Plotting heatmaps...") | |
| plot_heatmap(original_df, "Missing Values Before Cleaning") | |
| print("Plotting correlation heatmap...") | |
| plot_correlation_heatmap(cleaned_df) | |
| print(f"All visualization reports saved in directory: {REPORT_DIR}") |