reab5555 commited on
Commit
d398f50
·
verified ·
1 Parent(s): 9046777

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -70,7 +70,7 @@ def check_distribution(target_column):
70
  plt.figure(figsize=(12, 8), dpi=400)
71
 
72
  # Plot the original data distribution as a histogram
73
- sns.histplot(data, kde=False, stat="density", bins=30, color=actual_data_color, label='Actual Data Distribution')
74
 
75
  # Overlay the actual data KDE line
76
  sns.kdeplot(data, color=actual_data_color, lw=2, label='Actual Data Distribution Line')
@@ -79,7 +79,7 @@ def check_distribution(target_column):
79
  for i, (name, p_value, params) in enumerate(top_3_results):
80
  best_fit_data = np.linspace(min(data), max(data), 1000)
81
  pdf = distributions[name].pdf(best_fit_data, *params)
82
- p_value_text = "<0.0001" if p_value < 0.0001 else f"{p_value:.12f}"
83
  plt.plot(best_fit_data, pdf, color=distribution_colors[i], lw=2, label=f'{name} Fit (p-value={p_value_text})')
84
 
85
  plt.title("Top 3 Best Fit Distributions Overlaid")
@@ -95,7 +95,7 @@ def check_distribution(target_column):
95
  # Prepare result text with top 3 distributions and p-values
96
  result_text = "Top 3 best matched distributions:\n"
97
  for i, (name, p_value, _) in enumerate(top_3_results):
98
- p_value_text = "<0.0001" if p_value < 0.0001 else f"{p_value:.12f}"
99
  result_text += f"Top {i + 1}: {name} with a p-value of {p_value_text}\n"
100
 
101
  # Add disclaimer about p-value significance
@@ -107,10 +107,10 @@ def check_distribution(target_column):
107
  normal_pdf = norm.pdf(normal_best_fit_data, mean, std)
108
  ks_stat, normal_p_value = kstest(data, 'norm', args=(mean, std))
109
 
110
- p_value_text = "<0.0001" if normal_p_value < 0.0001 else f"{normal_p_value:.12f}"
111
 
112
  plt.figure(figsize=(12, 8), dpi=400)
113
- sns.histplot(data, kde=False, stat="density", bins=30, color=actual_data_color, label='Actual Data Distribution')
114
  sns.kdeplot(data, color=actual_data_color, lw=2, label='Actual Data Distribution Line')
115
  plt.plot(normal_best_fit_data, normal_pdf, color=normal_color, lw=2, label=f'Normal Fit (p-value={p_value_text})')
116
  plt.title("Comparison with Normal Distribution")
 
70
  plt.figure(figsize=(12, 8), dpi=400)
71
 
72
  # Plot the original data distribution as a histogram
73
+ sns.histplot(data, kde=False, stat="density", bins=50, color=actual_data_color, label='Actual Data Distribution')
74
 
75
  # Overlay the actual data KDE line
76
  sns.kdeplot(data, color=actual_data_color, lw=2, label='Actual Data Distribution Line')
 
79
  for i, (name, p_value, params) in enumerate(top_3_results):
80
  best_fit_data = np.linspace(min(data), max(data), 1000)
81
  pdf = distributions[name].pdf(best_fit_data, *params)
82
+ p_value_text = "<0.001" if p_value < 0.001 else f"{p_value:.5f}"
83
  plt.plot(best_fit_data, pdf, color=distribution_colors[i], lw=2, label=f'{name} Fit (p-value={p_value_text})')
84
 
85
  plt.title("Top 3 Best Fit Distributions Overlaid")
 
95
  # Prepare result text with top 3 distributions and p-values
96
  result_text = "Top 3 best matched distributions:\n"
97
  for i, (name, p_value, _) in enumerate(top_3_results):
98
+ p_value_text = "<0.001" if p_value < 0.001 else f"{p_value:.5f}"
99
  result_text += f"Top {i + 1}: {name} with a p-value of {p_value_text}\n"
100
 
101
  # Add disclaimer about p-value significance
 
107
  normal_pdf = norm.pdf(normal_best_fit_data, mean, std)
108
  ks_stat, normal_p_value = kstest(data, 'norm', args=(mean, std))
109
 
110
+ p_value_text = "<0.001" if normal_p_value < 0.001 else f"{normal_p_value:.5f}"
111
 
112
  plt.figure(figsize=(12, 8), dpi=400)
113
+ sns.histplot(data, kde=False, stat="density", bins=50, color=actual_data_color, label='Actual Data Distribution')
114
  sns.kdeplot(data, color=actual_data_color, lw=2, label='Actual Data Distribution Line')
115
  plt.plot(normal_best_fit_data, normal_pdf, color=normal_color, lw=2, label=f'Normal Fit (p-value={p_value_text})')
116
  plt.title("Comparison with Normal Distribution")