bditto commited on
Commit
981a2dd
·
verified ·
1 Parent(s): 3143f63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -64
app.py CHANGED
@@ -1,64 +1,33 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from transformers import pipeline
4
+ import random
5
+
6
+ # Safety tools 🛡️
7
+ BLOCKED_WORDS = ["violence", "hate", "gun", "personal"]
8
+ SAFE_IDEAS = [
9
+ "Design a robot to clean parks 🌳",
10
+ "Code a game about recycling ♻️",
11
+ "Plan an AI tool for school safety 🚸"
12
+ ]
13
+ safety_checker = pipeline("text-classification", model="facebook/roberta-hate-speech-dynabic-multilingual")
14
+
15
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
16
+
17
+ def is_safe(text):
18
+ text = text.lower()
19
+ if any(bad_word in text for bad_word in BLOCKED_WORDS):
20
+ return False
21
+ result = safety_checker(text)[0]
22
+ return not (result["label"] == "HATE" and result["score"] > 0.7)
23
+
24
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
25
+ if not is_safe(message):
26
+ return f"🚫 Let's focus on positive projects! Try: {random.choice(SAFE_IDEAS)}"
27
+
28
+ messages = [{
29
+ "role": "system",
30
+ "content": f"{system_message}\nYou are a friendly STEM mentor for kids. Never discuss unsafe topics!"
31
+ }]
32
+
33
+ # ... (rest of original code) ...