Update agent.py
Browse files
agent.py
CHANGED
|
@@ -25,7 +25,6 @@ from smolagents import (
|
|
| 25 |
CodeAgent,
|
| 26 |
DuckDuckGoSearchTool,
|
| 27 |
PythonInterpreterTool,
|
| 28 |
-
LiteLLMModel,
|
| 29 |
tool,
|
| 30 |
)
|
| 31 |
|
|
@@ -77,6 +76,108 @@ class RateLimiter:
|
|
| 77 |
# Global rate limiter instance
|
| 78 |
RATE_LIMITER = RateLimiter(requests_per_minute=25) # Keep below 40 for safety
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
# --------------------------------------------------------------------------- #
|
| 81 |
# custom tool: fetch GAIA attachments
|
| 82 |
# --------------------------------------------------------------------------- #
|
|
@@ -259,90 +360,6 @@ def analyze_excel_file(file_path: str, query: str) -> str:
|
|
| 259 |
except Exception as e:
|
| 260 |
return f"Error analyzing Excel file: {str(e)}"
|
| 261 |
|
| 262 |
-
# --------------------------------------------------------------------------- #
|
| 263 |
-
# Custom LiteLLM model with rate limiting and error handling
|
| 264 |
-
# --------------------------------------------------------------------------- #
|
| 265 |
-
# --------------------------------------------------------------------------- #
|
| 266 |
-
# Custom LiteLLM model with rate limiting and error handling
|
| 267 |
-
# --------------------------------------------------------------------------- #
|
| 268 |
-
class RateLimitedClaudeModel:
|
| 269 |
-
def __init__(
|
| 270 |
-
self,
|
| 271 |
-
model_id: str = "anthropic/claude-3-5-sonnet-20240620",
|
| 272 |
-
api_key: Optional[str] = None,
|
| 273 |
-
temperature: float = 0.1,
|
| 274 |
-
max_tokens: int = 1024,
|
| 275 |
-
max_retries: int = 3,
|
| 276 |
-
retry_delay: int = 5,
|
| 277 |
-
):
|
| 278 |
-
"""
|
| 279 |
-
Initialize a Claude model with rate limiting and error handling
|
| 280 |
-
|
| 281 |
-
Args:
|
| 282 |
-
model_id: The model ID to use
|
| 283 |
-
api_key: The API key to use
|
| 284 |
-
temperature: The temperature to use
|
| 285 |
-
max_tokens: The maximum number of tokens to generate
|
| 286 |
-
max_retries: The maximum number of retries on rate limit errors
|
| 287 |
-
retry_delay: The initial delay between retries (will increase exponentially)
|
| 288 |
-
"""
|
| 289 |
-
# Get API key
|
| 290 |
-
if api_key is None:
|
| 291 |
-
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 292 |
-
if not api_key:
|
| 293 |
-
raise ValueError("No Anthropic token provided. Please set ANTHROPIC_API_KEY environment variable or pass api_key parameter.")
|
| 294 |
-
|
| 295 |
-
self.model_id = model_id
|
| 296 |
-
self.api_key = api_key
|
| 297 |
-
self.temperature = temperature
|
| 298 |
-
self.max_tokens = max_tokens
|
| 299 |
-
self.max_retries = max_retries
|
| 300 |
-
self.retry_delay = retry_delay
|
| 301 |
-
|
| 302 |
-
# Create the underlying LiteLLM model
|
| 303 |
-
self.model = LiteLLMModel(
|
| 304 |
-
model_id=model_id,
|
| 305 |
-
api_key=api_key,
|
| 306 |
-
temperature=temperature
|
| 307 |
-
)
|
| 308 |
-
|
| 309 |
-
def __call__(self, prompt: str, **kwargs) -> str:
|
| 310 |
-
"""
|
| 311 |
-
Call the model with rate limiting and error handling
|
| 312 |
-
|
| 313 |
-
Args:
|
| 314 |
-
prompt: The prompt to generate from
|
| 315 |
-
|
| 316 |
-
Returns:
|
| 317 |
-
The generated text
|
| 318 |
-
"""
|
| 319 |
-
# Make sure system_instruction is always present
|
| 320 |
-
if "system_instruction" not in kwargs:
|
| 321 |
-
system_instruction = """You are a concise, highly accurate assistant specialized in solving challenges.
|
| 322 |
-
Your answers should be precise, direct, and exactly match the expected format.
|
| 323 |
-
All answers are graded by exact string match, so format carefully!"""
|
| 324 |
-
kwargs["system_instruction"] = system_instruction
|
| 325 |
-
|
| 326 |
-
retries = 0
|
| 327 |
-
while True:
|
| 328 |
-
try:
|
| 329 |
-
# Wait according to rate limiter
|
| 330 |
-
RATE_LIMITER.wait()
|
| 331 |
-
|
| 332 |
-
# Call the model
|
| 333 |
-
return self.model(prompt, **kwargs)
|
| 334 |
-
|
| 335 |
-
except Exception as e:
|
| 336 |
-
# Check if it's a rate limit error
|
| 337 |
-
if "rate_limit_error" in str(e) and retries < self.max_retries:
|
| 338 |
-
retries += 1
|
| 339 |
-
sleep_time = self.retry_delay * (2 ** (retries - 1)) # Exponential backoff
|
| 340 |
-
print(f"Rate limit exceeded, retrying in {sleep_time} seconds (attempt {retries}/{self.max_retries})...")
|
| 341 |
-
time.sleep(sleep_time)
|
| 342 |
-
else:
|
| 343 |
-
# If it's not a rate limit error or we've exceeded max retries, raise
|
| 344 |
-
raise
|
| 345 |
-
|
| 346 |
# --------------------------------------------------------------------------- #
|
| 347 |
# GAIAAgent class
|
| 348 |
# --------------------------------------------------------------------------- #
|
|
@@ -352,7 +369,6 @@ class GAIAAgent:
|
|
| 352 |
api_key: Optional[str] = None,
|
| 353 |
temperature: float = 0.1,
|
| 354 |
verbose: bool = False,
|
| 355 |
-
system_prompt: Optional[str] = None,
|
| 356 |
max_tokens: int = 1024,
|
| 357 |
):
|
| 358 |
"""
|
|
@@ -362,12 +378,13 @@ class GAIAAgent:
|
|
| 362 |
api_key: Anthropic API key (fetched from environment if not provided)
|
| 363 |
temperature: Temperature for text generation
|
| 364 |
verbose: Enable verbose logging
|
| 365 |
-
system_prompt: Custom system prompt (optional)
|
| 366 |
max_tokens: Maximum number of tokens to generate per response
|
| 367 |
"""
|
| 368 |
# Set verbosity
|
| 369 |
self.verbose = verbose
|
| 370 |
-
|
|
|
|
|
|
|
| 371 |
Unless explicitly required, reply with ONE short sentence.
|
| 372 |
Your answers should be precise, direct, and exactly match the expected format.
|
| 373 |
All answers are graded by exact string match, so format carefully!"""
|
|
@@ -376,21 +393,22 @@ All answers are graded by exact string match, so format carefully!"""
|
|
| 376 |
if api_key is None:
|
| 377 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 378 |
if not api_key:
|
| 379 |
-
raise ValueError("No Anthropic token provided. Please set ANTHROPIC_API_KEY environment variable
|
| 380 |
|
| 381 |
if self.verbose:
|
| 382 |
print(f"Using Anthropic token: {api_key[:5]}...")
|
| 383 |
|
| 384 |
-
# Initialize Claude model with
|
| 385 |
-
self.model =
|
| 386 |
model_id="anthropic/claude-3-5-sonnet-20240620", # Use Claude 3.5 Sonnet
|
| 387 |
api_key=api_key,
|
| 388 |
temperature=temperature,
|
| 389 |
max_tokens=max_tokens,
|
|
|
|
| 390 |
)
|
| 391 |
|
| 392 |
if self.verbose:
|
| 393 |
-
print(f"Initialized model:
|
| 394 |
|
| 395 |
# Initialize default tools
|
| 396 |
self.tools = [
|
|
@@ -457,7 +475,7 @@ All answers are graded by exact string match, so format carefully!"""
|
|
| 457 |
if task_file_path:
|
| 458 |
try:
|
| 459 |
# Limit file content size to avoid token limits
|
| 460 |
-
max_file_size =
|
| 461 |
with open(task_file_path, 'r', errors='ignore') as f:
|
| 462 |
file_content = f.read(max_file_size)
|
| 463 |
if len(file_content) >= max_file_size:
|
|
@@ -594,7 +612,7 @@ Example: If asked "What is the capital of France?", respond just with "Paris".
|
|
| 594 |
return answer
|
| 595 |
|
| 596 |
# --------------------------------------------------------------------------- #
|
| 597 |
-
#
|
| 598 |
# --------------------------------------------------------------------------- #
|
| 599 |
class ClaudeAgent:
|
| 600 |
"""Claude-enhanced agent for GAIA challenge"""
|
|
|
|
| 25 |
CodeAgent,
|
| 26 |
DuckDuckGoSearchTool,
|
| 27 |
PythonInterpreterTool,
|
|
|
|
| 28 |
tool,
|
| 29 |
)
|
| 30 |
|
|
|
|
| 76 |
# Global rate limiter instance
|
| 77 |
RATE_LIMITER = RateLimiter(requests_per_minute=25) # Keep below 40 for safety
|
| 78 |
|
| 79 |
+
# --------------------------------------------------------------------------- #
|
| 80 |
+
# Fixed LiteLLM model for Anthropic
|
| 81 |
+
# --------------------------------------------------------------------------- #
|
| 82 |
+
class FixedAnthropicModel:
|
| 83 |
+
"""
|
| 84 |
+
A wrapper around LiteLLM that properly handles Anthropic API calls
|
| 85 |
+
and avoids the "system_instruction: Extra inputs are not permitted" error
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
model_id: str = "anthropic/claude-3-5-sonnet-20240620",
|
| 91 |
+
api_key: Optional[str] = None,
|
| 92 |
+
temperature: float = 0.1,
|
| 93 |
+
max_tokens: int = 1024,
|
| 94 |
+
system_prompt: Optional[str] = None,
|
| 95 |
+
):
|
| 96 |
+
"""
|
| 97 |
+
Initialize a model that properly handles system prompts for Anthropic via LiteLLM
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
model_id: Claude model ID to use
|
| 101 |
+
api_key: API key (will use ANTHROPIC_API_KEY env var if not provided)
|
| 102 |
+
temperature: Temperature for text generation
|
| 103 |
+
max_tokens: Maximum tokens to generate
|
| 104 |
+
system_prompt: System prompt to use
|
| 105 |
+
"""
|
| 106 |
+
# Get API key from env if not provided
|
| 107 |
+
if api_key is None:
|
| 108 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 109 |
+
if not api_key:
|
| 110 |
+
raise ValueError("No Anthropic API key provided. Set ANTHROPIC_API_KEY env var.")
|
| 111 |
+
|
| 112 |
+
self.model_id = model_id
|
| 113 |
+
self.api_key = api_key
|
| 114 |
+
self.temperature = temperature
|
| 115 |
+
self.max_tokens = max_tokens
|
| 116 |
+
|
| 117 |
+
# Store the system prompt
|
| 118 |
+
self.system_prompt = system_prompt or """You are a concise, highly accurate assistant specialized in solving challenges.
|
| 119 |
+
Your answers should be precise, direct, and exactly match the expected format.
|
| 120 |
+
All answers are graded by exact string match, so format carefully!"""
|
| 121 |
+
|
| 122 |
+
print(f"Initialized FixedAnthropicModel with {model_id}")
|
| 123 |
+
|
| 124 |
+
def __call__(self, prompt: str, **kwargs) -> str:
|
| 125 |
+
"""
|
| 126 |
+
Call the model with appropriate handling of system prompts for Anthropic
|
| 127 |
+
|
| 128 |
+
Args:
|
| 129 |
+
prompt: The prompt to send to the model
|
| 130 |
+
**kwargs: Additional arguments to pass to LiteLLM
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
The model's response as a string
|
| 134 |
+
"""
|
| 135 |
+
# Wait according to rate limiter
|
| 136 |
+
RATE_LIMITER.wait()
|
| 137 |
+
|
| 138 |
+
try:
|
| 139 |
+
# For Anthropic models, we need to modify how system prompts are handled
|
| 140 |
+
# We do this by using the 'messages' parameter directly with the system content
|
| 141 |
+
|
| 142 |
+
# Extract system_instruction from kwargs if it exists and remove it
|
| 143 |
+
# (to avoid the "Extra inputs are not permitted" error)
|
| 144 |
+
if 'system_instruction' in kwargs:
|
| 145 |
+
# We'll ignore it and use our stored system prompt instead
|
| 146 |
+
del kwargs['system_instruction']
|
| 147 |
+
|
| 148 |
+
# Create our messages array with the system message and user prompt
|
| 149 |
+
messages = [
|
| 150 |
+
{"role": "system", "content": self.system_prompt},
|
| 151 |
+
{"role": "user", "content": prompt}
|
| 152 |
+
]
|
| 153 |
+
|
| 154 |
+
# Call LiteLLM with the proper message format for Anthropic
|
| 155 |
+
from litellm import completion
|
| 156 |
+
response = completion(
|
| 157 |
+
model=self.model_id,
|
| 158 |
+
messages=messages,
|
| 159 |
+
api_key=self.api_key,
|
| 160 |
+
temperature=self.temperature,
|
| 161 |
+
max_tokens=self.max_tokens,
|
| 162 |
+
**kwargs
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# Extract the content from the response
|
| 166 |
+
return response.choices[0].message.content
|
| 167 |
+
|
| 168 |
+
except Exception as e:
|
| 169 |
+
if "rate_limit" in str(e).lower():
|
| 170 |
+
# Specific handling for rate limit errors
|
| 171 |
+
print(f"Rate limit error: {e}")
|
| 172 |
+
print("Waiting 60 seconds before retrying...")
|
| 173 |
+
time.sleep(60)
|
| 174 |
+
# Recursive retry after waiting
|
| 175 |
+
return self.__call__(prompt, **kwargs)
|
| 176 |
+
else:
|
| 177 |
+
# Re-raise other errors
|
| 178 |
+
print(f"Error calling Anthropic API: {e}")
|
| 179 |
+
raise
|
| 180 |
+
|
| 181 |
# --------------------------------------------------------------------------- #
|
| 182 |
# custom tool: fetch GAIA attachments
|
| 183 |
# --------------------------------------------------------------------------- #
|
|
|
|
| 360 |
except Exception as e:
|
| 361 |
return f"Error analyzing Excel file: {str(e)}"
|
| 362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
# --------------------------------------------------------------------------- #
|
| 364 |
# GAIAAgent class
|
| 365 |
# --------------------------------------------------------------------------- #
|
|
|
|
| 369 |
api_key: Optional[str] = None,
|
| 370 |
temperature: float = 0.1,
|
| 371 |
verbose: bool = False,
|
|
|
|
| 372 |
max_tokens: int = 1024,
|
| 373 |
):
|
| 374 |
"""
|
|
|
|
| 378 |
api_key: Anthropic API key (fetched from environment if not provided)
|
| 379 |
temperature: Temperature for text generation
|
| 380 |
verbose: Enable verbose logging
|
|
|
|
| 381 |
max_tokens: Maximum number of tokens to generate per response
|
| 382 |
"""
|
| 383 |
# Set verbosity
|
| 384 |
self.verbose = verbose
|
| 385 |
+
|
| 386 |
+
# System prompt for all Claude interactions
|
| 387 |
+
self.system_prompt = """You are a concise, highly accurate assistant specialized in solving challenges for the GAIA benchmark.
|
| 388 |
Unless explicitly required, reply with ONE short sentence.
|
| 389 |
Your answers should be precise, direct, and exactly match the expected format.
|
| 390 |
All answers are graded by exact string match, so format carefully!"""
|
|
|
|
| 393 |
if api_key is None:
|
| 394 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 395 |
if not api_key:
|
| 396 |
+
raise ValueError("No Anthropic token provided. Please set ANTHROPIC_API_KEY environment variable.")
|
| 397 |
|
| 398 |
if self.verbose:
|
| 399 |
print(f"Using Anthropic token: {api_key[:5]}...")
|
| 400 |
|
| 401 |
+
# Initialize Claude model with our fixed wrapper
|
| 402 |
+
self.model = FixedAnthropicModel(
|
| 403 |
model_id="anthropic/claude-3-5-sonnet-20240620", # Use Claude 3.5 Sonnet
|
| 404 |
api_key=api_key,
|
| 405 |
temperature=temperature,
|
| 406 |
max_tokens=max_tokens,
|
| 407 |
+
system_prompt=self.system_prompt,
|
| 408 |
)
|
| 409 |
|
| 410 |
if self.verbose:
|
| 411 |
+
print(f"Initialized model: FixedAnthropicModel - claude-3-5-sonnet-20240620")
|
| 412 |
|
| 413 |
# Initialize default tools
|
| 414 |
self.tools = [
|
|
|
|
| 475 |
if task_file_path:
|
| 476 |
try:
|
| 477 |
# Limit file content size to avoid token limits
|
| 478 |
+
max_file_size = 8000 # Characters - reduced further to help with token limits
|
| 479 |
with open(task_file_path, 'r', errors='ignore') as f:
|
| 480 |
file_content = f.read(max_file_size)
|
| 481 |
if len(file_content) >= max_file_size:
|
|
|
|
| 612 |
return answer
|
| 613 |
|
| 614 |
# --------------------------------------------------------------------------- #
|
| 615 |
+
# ClaudeAgent class - Wrapper around GAIAAgent
|
| 616 |
# --------------------------------------------------------------------------- #
|
| 617 |
class ClaudeAgent:
|
| 618 |
"""Claude-enhanced agent for GAIA challenge"""
|