Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
start_time = time.time()
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Tuple
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
import duckdb
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
|
| 13 |
+
USE_DOTENV = False
|
| 14 |
+
|
| 15 |
+
ROOT = Path(__file__).parent
|
| 16 |
+
|
| 17 |
+
JSON_PATH = ROOT / "json"
|
| 18 |
+
# DATASET_PATH = ROOT / "pkl" / "app_dataset.pkl"
|
| 19 |
+
DOTENV_PATH = ROOT.parent.parent / "apis" / ".env"
|
| 20 |
+
# DUCKDB_PATH = ROOT / "db" / "sss_vectordb.duckdb"
|
| 21 |
+
|
| 22 |
+
from src import front_dataset_handler as fdh, app_utils as utils, semantic_search as ss, env_options
|
| 23 |
+
tokens = env_options.check_env(use_dotenv=USE_DOTENV, dotenv_path=DOTENV_PATH, env_tokens = ["HF_TOKEN"])
|
| 24 |
+
print(f"Libraries loaded. {time.time() - start_time:.2f} seconds.")
|
| 25 |
+
# Carga de modelo de embeddings y conexión a DuckDB
|
| 26 |
+
emb_model = SentenceTransformer("FinLang/finance-embeddings-investopedia", token = tokens.get("HF_TOKEN"))
|
| 27 |
+
# con = duckdb.connect(DUCKDB_PATH)
|
| 28 |
+
print(f"Model loaded. {time.time() - start_time:.2f} seconds.")
|
| 29 |
+
#### CONEXIÓN DUCKDB A HUGGING FACE HUB ####
|
| 30 |
+
print("Initializing DuckDB connection...")
|
| 31 |
+
con = duckdb.connect()
|
| 32 |
+
hf_token = tokens.get("HF_TOKEN")
|
| 33 |
+
##################################
|
| 34 |
+
masked_hf_token = hf_token[:4] + "*" * (len(hf_token) - 8) + hf_token[-4:]
|
| 35 |
+
print(f"Using Hugging Face token: {masked_hf_token}")
|
| 36 |
+
##################################
|
| 37 |
+
|
| 38 |
+
hf_token = tokens.get("HF_TOKEN")
|
| 39 |
+
masked_hf_token = hf_token[:4] + "*" * (len(hf_token) - 8) + hf_token[-4:]
|
| 40 |
+
'''
|
| 41 |
+
create_secret_query = f"""
|
| 42 |
+
INSTALL httpfs;
|
| 43 |
+
LOAD httpfs;
|
| 44 |
+
CREATE PERSISTENT SECRET hf_token (
|
| 45 |
+
TYPE huggingface,
|
| 46 |
+
TOKEN '{hf_token}'
|
| 47 |
+
);
|
| 48 |
+
"""
|
| 49 |
+
'''
|
| 50 |
+
# con.sql(create_secret_query)
|
| 51 |
+
# print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf())
|
| 52 |
+
dataset_name = "reddgr/swift-stock-screener"
|
| 53 |
+
# con.sql(query="INSTALL vss; LOAD vss;")
|
| 54 |
+
|
| 55 |
+
create_secret_query = f"""
|
| 56 |
+
INSTALL httpfs;
|
| 57 |
+
LOAD httpfs;
|
| 58 |
+
CREATE PERSISTENT SECRET hf_token (
|
| 59 |
+
TYPE huggingface,
|
| 60 |
+
TOKEN '{hf_token}'
|
| 61 |
+
);
|
| 62 |
+
"""
|
| 63 |
+
con.sql(create_secret_query)
|
| 64 |
+
print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf().iloc[0,-2])
|
| 65 |
+
print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf().iloc[0,-1])
|
| 66 |
+
print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf())
|
| 67 |
+
|
| 68 |
+
create_table_query = f"""
|
| 69 |
+
INSTALL vss;
|
| 70 |
+
LOAD vss;
|
| 71 |
+
SET hnsw_enable_experimental_persistence = true;
|
| 72 |
+
CREATE TABLE vector_table AS
|
| 73 |
+
SELECT *, embeddings::float[{emb_model.get_sentence_embedding_dimension()}] as embeddings_float
|
| 74 |
+
FROM 'hf://datasets/{dataset_name}/data/train-00000-of-00001.parquet';
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
con.sql(create_table_query)
|
| 78 |
+
|
| 79 |
+
print("Indexing data for vector search...")
|
| 80 |
+
create_index_query = f"""
|
| 81 |
+
CREATE INDEX sss_hnsw_index ON vector_table USING HNSW (embeddings_float) WITH (metric = 'cosine');
|
| 82 |
+
"""
|
| 83 |
+
con.sql(create_index_query)
|
| 84 |
+
|
| 85 |
+
# print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf())
|
| 86 |
+
print(f"Created search index. {time.time() - start_time:.2f} seconds.")
|
| 87 |
+
########################################
|
| 88 |
+
|
| 89 |
+
# ESTADO GLOBAL
|
| 90 |
+
last_result_df: pd.DataFrame = pd.DataFrame()
|
| 91 |
+
|
| 92 |
+
######################
|
| 93 |
+
last_search_type: str = ""
|
| 94 |
+
last_search_query: str = ""
|
| 95 |
+
# last_filtros_values: Tuple = ()
|
| 96 |
+
last_column_filters: list[tuple[str, str]] = []
|
| 97 |
+
last_sort_col_label: str = ""
|
| 98 |
+
last_sort_dir: str = ""
|
| 99 |
+
#######################
|
| 100 |
+
|
| 101 |
+
# ---------------------------------------------------------------------------
|
| 102 |
+
# CONFIG --------------------------------------------------------------------
|
| 103 |
+
# ---------------------------------------------------------------------------
|
| 104 |
+
app_dataset = load_dataset("reddgr/swift-stock-screener", split="train", token = tokens.get("HF_TOKEN")).to_pandas()
|
| 105 |
+
|
| 106 |
+
# dh_app = fdh.FrontDatasetHandler(app_dataset=pd.read_pickle(DATASET_PATH))
|
| 107 |
+
dh_app = fdh.FrontDatasetHandler(app_dataset=app_dataset)
|
| 108 |
+
maestro = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='EQUITY'].copy()
|
| 109 |
+
maestro_etf = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='ETF'].copy()
|
| 110 |
+
|
| 111 |
+
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
| 112 |
+
variables_busq_norm = json.load(f)["variables_busq_norm"]
|
| 113 |
+
|
| 114 |
+
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
| 115 |
+
caracteristicas = json.load(f)["cols_tabla_equity"]
|
| 116 |
+
|
| 117 |
+
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
| 118 |
+
caracteristicas_etf = json.load(f)["cols_tabla_etfs"]
|
| 119 |
+
|
| 120 |
+
with open(JSON_PATH / "cat_cols.json", "r") as f:
|
| 121 |
+
cat_cols = json.load(f)["cat_cols"]
|
| 122 |
+
|
| 123 |
+
with open(JSON_PATH / "col_names_map.json", "r") as f:
|
| 124 |
+
rename_columns = json.load(f)["col_names_map"]
|
| 125 |
+
|
| 126 |
+
with open(JSON_PATH / "gamma_params.json", "r") as f:
|
| 127 |
+
gamma_params = json.load(f)
|
| 128 |
+
|
| 129 |
+
with open(JSON_PATH / "semantic_search_params.json", "r") as f:
|
| 130 |
+
semantic_search_params = json.load(f)["semantic_search_params"]
|
| 131 |
+
|
| 132 |
+
# Columnas a estilizar en rojo si son negativas
|
| 133 |
+
neg_display_cols = [rename_columns.get(c, c)
|
| 134 |
+
for c in ("ret_365", "revenueGrowth")]
|
| 135 |
+
|
| 136 |
+
# Parámetros de la función de distribución de distancias:
|
| 137 |
+
shape, loc, scale = gamma_params["shape"], gamma_params["loc"], gamma_params["scale"]
|
| 138 |
+
max_dist, precision_cdf = gamma_params["max_dist"], gamma_params["precision_cdf"]
|
| 139 |
+
y_cdf, _ = dh_app.configura_distr_prob(shape, loc, scale, max_dist, precision_cdf)
|
| 140 |
+
|
| 141 |
+
# Parámetros de la de búsqueda VSS:
|
| 142 |
+
k = semantic_search_params["k"]
|
| 143 |
+
brevity_penalty = semantic_search_params["brevity_penalty"]
|
| 144 |
+
reward_for_literal = semantic_search_params["reward_for_literal"]
|
| 145 |
+
partial_match_factor = semantic_search_params["partial_match_factor"]
|
| 146 |
+
print(f"VSS params: k={k}, brevity_penalty={brevity_penalty}, reward_for_literal={reward_for_literal}, partial_match_factor={partial_match_factor}")
|
| 147 |
+
|
| 148 |
+
filtros_keys = caracteristicas[2:]
|
| 149 |
+
|
| 150 |
+
MAX_ROWS = 13000
|
| 151 |
+
ROWS_PER_PAGE = 100
|
| 152 |
+
|
| 153 |
+
# ---------------------------------------------------------------------------
|
| 154 |
+
# FUNCIONES UI --------------------------------------------------------------
|
| 155 |
+
# ---------------------------------------------------------------------------
|
| 156 |
+
|
| 157 |
+
# Dejamos en este módulo (en lugar de app_utils) funciones específicas de gestión de la interfaz
|
| 158 |
+
|
| 159 |
+
def _paginate(df: pd.DataFrame, page: int, per_page: int = ROWS_PER_PAGE) -> Tuple[pd.DataFrame, str]:
|
| 160 |
+
total_pages = max(1, (len(df) + per_page - 1) // per_page)
|
| 161 |
+
page = max(1, min(page, total_pages))
|
| 162 |
+
slice_df = df.iloc[(page-1)*per_page : (page-1)*per_page + per_page]
|
| 163 |
+
slice_df = utils.styler_negative_red(slice_df, cols=neg_display_cols)
|
| 164 |
+
return slice_df, f"Page {page} of {total_pages}"
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def search_dynamic(ticker: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
|
| 168 |
+
global last_result_df
|
| 169 |
+
|
| 170 |
+
ticker = ticker.upper().strip()
|
| 171 |
+
if ticker == "":
|
| 172 |
+
last_result_df = pd.DataFrame()
|
| 173 |
+
return pd.DataFrame(), "Page 1 of 1"
|
| 174 |
+
|
| 175 |
+
filtros = dict(zip(filtros_keys, filtros_values))
|
| 176 |
+
|
| 177 |
+
neighbors_df = dh_app.vecinos_cercanos(
|
| 178 |
+
df=maestro,
|
| 179 |
+
variables_busq=variables_busq_norm,
|
| 180 |
+
caracteristicas=caracteristicas,
|
| 181 |
+
target_ticker=ticker,
|
| 182 |
+
y_cdf=y_cdf,
|
| 183 |
+
precision_cdf=precision_cdf,
|
| 184 |
+
max_dist=max_dist,
|
| 185 |
+
n_neighbors=len(maestro),
|
| 186 |
+
filtros=filtros,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
if isinstance(neighbors_df, str):
|
| 190 |
+
last_result_df = pd.DataFrame()
|
| 191 |
+
return pd.DataFrame(), "Page 1 de 1"
|
| 192 |
+
|
| 193 |
+
neighbors_df.reset_index(inplace=True)
|
| 194 |
+
neighbors_df.drop(columns=["distance"], inplace=True)
|
| 195 |
+
# neighbors_df = format_results(neighbors_df)
|
| 196 |
+
neighbors_df = utils.format_results(neighbors_df, rename_columns)
|
| 197 |
+
|
| 198 |
+
last_result_df = neighbors_df.head(MAX_ROWS).copy()
|
| 199 |
+
return _paginate(last_result_df, page)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def search_theme(theme: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
|
| 203 |
+
global last_result_df
|
| 204 |
+
query = theme.strip()
|
| 205 |
+
if query == "":
|
| 206 |
+
last_result_df = pd.DataFrame()
|
| 207 |
+
return pd.DataFrame(), "Page 1 of 1"
|
| 208 |
+
|
| 209 |
+
# Llamada al algoritmo de búsqueda, que devuelve un dataframe con k activos:
|
| 210 |
+
result_df = ss.duckdb_vss_local(
|
| 211 |
+
model=emb_model,
|
| 212 |
+
duckdb_connection=con,
|
| 213 |
+
query=query,
|
| 214 |
+
k=k,
|
| 215 |
+
brevity_penalty=brevity_penalty,
|
| 216 |
+
reward_for_literal=reward_for_literal,
|
| 217 |
+
partial_match_factor=partial_match_factor,
|
| 218 |
+
table_name="vector_table",
|
| 219 |
+
embedding_column="embeddings"
|
| 220 |
+
)
|
| 221 |
+
theme_dist = result_df[['ticker', 'distance']].rename(columns={'distance': 'Search dist.'})
|
| 222 |
+
# Cruzamos el dataframe de distancias con el maestro y mantenemos las columnas originales:
|
| 223 |
+
clean_feats = [c for c in caracteristicas if c != 'ticker']
|
| 224 |
+
# indexamos por ticker para cruzar las tablas:
|
| 225 |
+
maestro_subset = maestro.set_index('ticker')[clean_feats]
|
| 226 |
+
merged = theme_dist.set_index('ticker').join(maestro_subset, how='inner').reset_index()
|
| 227 |
+
# Reordenamos las columnas y añadimos la distancia:
|
| 228 |
+
ordered_cols = ['ticker'] + clean_feats + ['Search dist.']
|
| 229 |
+
merged = merged[ordered_cols]
|
| 230 |
+
# Ajustamos los formatos de las columnas:
|
| 231 |
+
formatted = utils.format_results(merged, rename_columns)
|
| 232 |
+
last_result_df = formatted.head(MAX_ROWS).copy()
|
| 233 |
+
return _paginate(last_result_df, page)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def _compose_summary() -> str:
|
| 237 |
+
parts = []
|
| 238 |
+
if last_search_type == "theme":
|
| 239 |
+
parts.append(f"Theme search for '{last_search_query}'")
|
| 240 |
+
elif last_search_type == "ticker":
|
| 241 |
+
parts.append(f"Ticker search for '{last_search_query}'")
|
| 242 |
+
if last_column_filters:
|
| 243 |
+
fstr = ", ".join(f"{col} = '{val}'" for col, val in last_column_filters)
|
| 244 |
+
parts.append(f"Filters: {fstr}")
|
| 245 |
+
if last_sort_col_label:
|
| 246 |
+
parts.append(f"Sorted by: {last_sort_col_label} ({last_sort_dir})")
|
| 247 |
+
return ". ".join(parts)
|
| 248 |
+
|
| 249 |
+
def search_all(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
|
| 250 |
+
global last_search_type, last_search_query, last_column_filters
|
| 251 |
+
last_column_filters.clear()
|
| 252 |
+
|
| 253 |
+
if theme.strip():
|
| 254 |
+
last_search_type, last_search_query = "theme", theme.strip()
|
| 255 |
+
df, label = search_theme(theme, page)
|
| 256 |
+
# new_ticker, new_theme = "", theme.strip()
|
| 257 |
+
new_ticker, new_theme = "", "" # limpia las cajas de búsqueda
|
| 258 |
+
|
| 259 |
+
elif ticker.strip():
|
| 260 |
+
last_search_type, last_search_query = "ticker", ticker.strip().upper()
|
| 261 |
+
df, label = search_dynamic(ticker, page)
|
| 262 |
+
# new_ticker, new_theme = last_search_query, ""
|
| 263 |
+
new_ticker, new_theme = "", ""
|
| 264 |
+
|
| 265 |
+
else:
|
| 266 |
+
df, label = _paginate(last_result_df, page)
|
| 267 |
+
new_ticker, new_theme = "", ""
|
| 268 |
+
|
| 269 |
+
summary = _compose_summary()
|
| 270 |
+
return df, label, new_ticker, new_theme, summary
|
| 271 |
+
|
| 272 |
+
def page_change(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
|
| 273 |
+
return search_all(theme, ticker, page)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# ---------------------------------------------------------------------------
|
| 277 |
+
# SORTING -------------------------------------------------------------------
|
| 278 |
+
# ---------------------------------------------------------------------------
|
| 279 |
+
|
| 280 |
+
def apply_sort(col_label: str, direction: str) -> tuple[pd.DataFrame, str, int, str]:
|
| 281 |
+
global last_sort_col_label, last_sort_dir, last_search_type, last_search_query, last_column_filters, last_result_df
|
| 282 |
+
|
| 283 |
+
# record selection and clear previous state
|
| 284 |
+
last_sort_col_label, last_sort_dir = col_label or "", direction or ""
|
| 285 |
+
last_search_type = last_search_query = ""
|
| 286 |
+
last_column_filters.clear()
|
| 287 |
+
|
| 288 |
+
# reload raw data
|
| 289 |
+
df_raw = maestro[caracteristicas].head(MAX_ROWS).copy()
|
| 290 |
+
|
| 291 |
+
# sort on original data column if specified
|
| 292 |
+
if col_label:
|
| 293 |
+
# reverse lookup original column key
|
| 294 |
+
inv_map = {v: k for k, v in rename_columns.items()}
|
| 295 |
+
orig_col = inv_map.get(col_label, col_label)
|
| 296 |
+
asc = (direction == "Ascending")
|
| 297 |
+
df_raw = df_raw.sort_values(
|
| 298 |
+
by=orig_col,
|
| 299 |
+
ascending=asc,
|
| 300 |
+
na_position='last'
|
| 301 |
+
).reset_index(drop=True)
|
| 302 |
+
|
| 303 |
+
# apply existing formatting helpers
|
| 304 |
+
df_formatted = utils.format_results(df_raw, rename_columns)
|
| 305 |
+
|
| 306 |
+
# update global and paginate
|
| 307 |
+
last_result_df = df_formatted.copy()
|
| 308 |
+
slice_df, label = _paginate(last_result_df, 1)
|
| 309 |
+
summary = f"Sorted by: {col_label} ({direction})" if col_label else ""
|
| 310 |
+
return slice_df, label, 1, summary
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def reset_initial() -> tuple[pd.DataFrame,str,int,str,str,str]:
|
| 315 |
+
global last_search_type, last_search_query, last_column_filters, last_sort_col_label, last_sort_dir, last_result_df
|
| 316 |
+
last_search_type = last_search_query = ""
|
| 317 |
+
last_column_filters.clear()
|
| 318 |
+
last_sort_col_label = last_sort_dir = ""
|
| 319 |
+
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
|
| 320 |
+
slice_df, label = _paginate(last_result_df, 1)
|
| 321 |
+
default_sort = rename_columns.get("marketCap","marketCap")
|
| 322 |
+
return slice_df, label, 1, "", "", default_sort, ""
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
# ---------------------------------------------------------------------------
|
| 326 |
+
# DATOS INICIALES -----------------------------------------------------------
|
| 327 |
+
# ---------------------------------------------------------------------------
|
| 328 |
+
|
| 329 |
+
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
|
| 330 |
+
_initial_slice, _initial_label = _paginate(last_result_df, 1)
|
| 331 |
+
|
| 332 |
+
# ---------------------------------------------------------------------------
|
| 333 |
+
# UI ------------------------------------------------------------------------
|
| 334 |
+
# ---------------------------------------------------------------------------
|
| 335 |
+
|
| 336 |
+
def _load_html(name: str) -> str:
|
| 337 |
+
return (ROOT / "html" / name).read_text(encoding="utf-8")
|
| 338 |
+
|
| 339 |
+
html_front_layout = _load_html("front_layout.html")
|
| 340 |
+
|
| 341 |
+
with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
| 342 |
+
gr.HTML(html_front_layout)
|
| 343 |
+
|
| 344 |
+
# ---------------------- TOP INPUT -------------------------------------
|
| 345 |
+
with gr.Row(equal_height=True):
|
| 346 |
+
theme_input = gr.Textbox(show_label=False, placeholder="Search a theme. i.e. 'lithium'", scale=2)
|
| 347 |
+
ticker_input = gr.Textbox(show_label=False, placeholder="Enter a ticker symbol", scale=1)
|
| 348 |
+
buscar_button = gr.Button("Search")
|
| 349 |
+
gr.HTML("<div></div>")
|
| 350 |
+
reset_button = gr.Button("Reset", elem_classes="small-btn")
|
| 351 |
+
# gr.HTML("<div></div>")
|
| 352 |
+
random_button = gr.Button("Random ticker", elem_classes="small-btn")
|
| 353 |
+
|
| 354 |
+
# ---------------------- SEARCH SUMMARY ------------------------
|
| 355 |
+
summary_display = gr.Markdown("", elem_classes="search-spec")
|
| 356 |
+
|
| 357 |
+
# ---------------------- DATAFRAME & PAGINATION ------------------------
|
| 358 |
+
|
| 359 |
+
output_df = gr.Dataframe(
|
| 360 |
+
value=_initial_slice,
|
| 361 |
+
interactive=False,
|
| 362 |
+
elem_classes="clickable-columns",
|
| 363 |
+
# max_height=500
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
# ---------------------- PAGINATION AND SORT CONTROLS ---------------------
|
| 368 |
+
with gr.Row():
|
| 369 |
+
btn_prev = gr.Button("Previous", elem_classes="small-btn")
|
| 370 |
+
pagination_label = gr.Markdown(_initial_label)
|
| 371 |
+
btn_next = gr.Button("Next", elem_classes="small-btn")
|
| 372 |
+
gr.Markdown(" " * 20)
|
| 373 |
+
# merged sort controls on right
|
| 374 |
+
sort_col = gr.Dropdown(
|
| 375 |
+
choices=[rename_columns.get(c, c) for c in caracteristicas],
|
| 376 |
+
value=None,
|
| 377 |
+
label="Reset and sort by:",
|
| 378 |
+
allow_custom_value=False,
|
| 379 |
+
scale=2,
|
| 380 |
+
)
|
| 381 |
+
sort_dir = gr.Radio(
|
| 382 |
+
choices=["Ascending", "Descending"],
|
| 383 |
+
value="Descending",
|
| 384 |
+
label="",
|
| 385 |
+
scale=1,
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
page_state = gr.State(1)
|
| 389 |
+
|
| 390 |
+
# ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
|
| 391 |
+
# De momento excluimos esta funcionalidad, al menos en la tabla de acciones,
|
| 392 |
+
# por la complejidad que añade (es una herencia del buscador de fondos de inversión)
|
| 393 |
+
# Potencial mejora para cuando incorporemos la tabla de ETFs
|
| 394 |
+
'''
|
| 395 |
+
with gr.Row():
|
| 396 |
+
toggle_components = [
|
| 397 |
+
gr.Checkbox(value=True, label=rename_columns.get(k, k)) for k in filtros_keys
|
| 398 |
+
]
|
| 399 |
+
'''
|
| 400 |
+
|
| 401 |
+
# ---------------------- HELPERS ---------------------------------------
|
| 402 |
+
def reset_page():
|
| 403 |
+
return 1
|
| 404 |
+
|
| 405 |
+
def prev_page(p):
|
| 406 |
+
return max(p - 1, 1)
|
| 407 |
+
|
| 408 |
+
def next_page(p):
|
| 409 |
+
return p + 1
|
| 410 |
+
|
| 411 |
+
def search_inputs():
|
| 412 |
+
return [theme_input, ticker_input, page_state]
|
| 413 |
+
|
| 414 |
+
def random_action() -> tuple[str,int,str]:
|
| 415 |
+
return utils.random_ticker(maestro), 1, ""
|
| 416 |
+
|
| 417 |
+
# ---------------------- BINDINGS --------------------------------------
|
| 418 |
+
# search_dynamic -> search_all
|
| 419 |
+
inputs = [theme_input, ticker_input, page_state]
|
| 420 |
+
|
| 421 |
+
buscar_button.click(
|
| 422 |
+
search_all,
|
| 423 |
+
inputs=inputs,
|
| 424 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
ticker_input.submit(
|
| 428 |
+
reset_page, None, page_state
|
| 429 |
+
).then(
|
| 430 |
+
search_all,
|
| 431 |
+
inputs=inputs,
|
| 432 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
theme_input.submit(
|
| 436 |
+
reset_page, None, page_state
|
| 437 |
+
).then(
|
| 438 |
+
search_all,
|
| 439 |
+
inputs=inputs,
|
| 440 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
random_button.click(
|
| 444 |
+
random_action,
|
| 445 |
+
None,
|
| 446 |
+
[ticker_input, page_state, theme_input]
|
| 447 |
+
).then(
|
| 448 |
+
search_all,
|
| 449 |
+
inputs=inputs,
|
| 450 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
reset_button.click(
|
| 454 |
+
reset_initial,
|
| 455 |
+
None,
|
| 456 |
+
[output_df, pagination_label, page_state, ticker_input, theme_input, sort_col, summary_display]
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
btn_prev.click(
|
| 460 |
+
prev_page, page_state, page_state
|
| 461 |
+
).then(
|
| 462 |
+
page_change,
|
| 463 |
+
inputs=inputs,
|
| 464 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
btn_next.click(
|
| 468 |
+
next_page, page_state, page_state
|
| 469 |
+
).then(
|
| 470 |
+
page_change,
|
| 471 |
+
inputs=inputs,
|
| 472 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
sort_col.change(
|
| 476 |
+
apply_sort,
|
| 477 |
+
inputs=[sort_col, sort_dir],
|
| 478 |
+
outputs=[output_df, pagination_label, page_state, summary_display]
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
sort_dir.change(
|
| 482 |
+
apply_sort,
|
| 483 |
+
inputs=[sort_col, sort_dir],
|
| 484 |
+
outputs=[output_df, pagination_label, page_state, summary_display]
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
# ---------------------- FILTERS BY COLUMN ------------------ #
|
| 488 |
+
filterable_columns = [rename_columns.get(c, c) for c in cat_cols]
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def filter_by_column(evt: gr.SelectData) -> tuple[pd.DataFrame,str,int,str]:
|
| 492 |
+
global last_result_df, last_column_filters
|
| 493 |
+
if last_result_df.empty:
|
| 494 |
+
return pd.DataFrame(), "Page 1 of 1", 1, _compose_summary()
|
| 495 |
+
|
| 496 |
+
col = last_result_df.columns[evt.index[1]]
|
| 497 |
+
# print(f"DEBUG: resolving to column #{evt.index[1]} → '{col}'")
|
| 498 |
+
val = evt.value
|
| 499 |
+
last_column_filters.append((col, val))
|
| 500 |
+
filtered = last_result_df[last_result_df[col] == val]
|
| 501 |
+
last_result_df = filtered.copy()
|
| 502 |
+
slice_df, label = _paginate(last_result_df, 1)
|
| 503 |
+
summary = _compose_summary()
|
| 504 |
+
return slice_df, label, 1, summary
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
output_df.select(
|
| 508 |
+
filter_by_column,
|
| 509 |
+
outputs=[output_df, pagination_label, page_state, summary_display]
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
# ---------------------------------------------------------------------------
|
| 513 |
+
# LAUNCH --------------------------------------------------------------------
|
| 514 |
+
# ---------------------------------------------------------------------------
|
| 515 |
+
|
| 516 |
+
if __name__ == "__main__":
|
| 517 |
+
front.launch()
|