Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -239,6 +239,7 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
| 239 |
from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader, Settings
|
| 240 |
from llama_index.core import load_index_from_storage
|
| 241 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
| 242 |
|
| 243 |
# Configure logging
|
| 244 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -275,7 +276,7 @@ for var in required_env_vars:
|
|
| 275 |
GROQ_API_KEY = os.getenv("CHATGROQ_API_KEY")
|
| 276 |
GROQ_MODEL = "llama3-8b-8192"
|
| 277 |
try:
|
| 278 |
-
|
| 279 |
model_name=GROQ_MODEL,
|
| 280 |
api_key=GROQ_API_KEY,
|
| 281 |
temperature=0.1,
|
|
@@ -287,6 +288,7 @@ except Exception as e:
|
|
| 287 |
|
| 288 |
# Configure LlamaIndex settings
|
| 289 |
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
|
|
|
| 290 |
|
| 291 |
# Salesforce credentials
|
| 292 |
username = os.getenv("username")
|
|
@@ -387,7 +389,7 @@ def handle_query(query: str) -> str:
|
|
| 387 |
|
| 388 |
# Query Groq model
|
| 389 |
try:
|
| 390 |
-
response =
|
| 391 |
response_text = response.content.strip()
|
| 392 |
if not response_text or response_text.lower() == "unknown":
|
| 393 |
response_text = "I'm sorry, I don't have the information to answer that."
|
|
|
|
| 239 |
from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader, Settings
|
| 240 |
from llama_index.core import load_index_from_storage
|
| 241 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 242 |
+
from llama_index.llms.langchain import LangChainLLM # Added for Groq integration
|
| 243 |
|
| 244 |
# Configure logging
|
| 245 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 276 |
GROQ_API_KEY = os.getenv("CHATGROQ_API_KEY")
|
| 277 |
GROQ_MODEL = "llama3-8b-8192"
|
| 278 |
try:
|
| 279 |
+
groq_llm = ChatGroq(
|
| 280 |
model_name=GROQ_MODEL,
|
| 281 |
api_key=GROQ_API_KEY,
|
| 282 |
temperature=0.1,
|
|
|
|
| 288 |
|
| 289 |
# Configure LlamaIndex settings
|
| 290 |
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
| 291 |
+
Settings.llm = LangChainLLM(llm=groq_llm) # Use Groq LLM for LlamaIndex
|
| 292 |
|
| 293 |
# Salesforce credentials
|
| 294 |
username = os.getenv("username")
|
|
|
|
| 389 |
|
| 390 |
# Query Groq model
|
| 391 |
try:
|
| 392 |
+
response = groq_llm.invoke(prompt)
|
| 393 |
response_text = response.content.strip()
|
| 394 |
if not response_text or response_text.lower() == "unknown":
|
| 395 |
response_text = "I'm sorry, I don't have the information to answer that."
|