Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
pip install tensorflow==2.11.0
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
# Import tensorflow here
|
|
@@ -9,20 +8,16 @@ from tensorflow.keras.models import load_model # Use tensorflow.keras.models
|
|
| 9 |
import numpy as np
|
| 10 |
|
| 11 |
# Load the pre-trained model from the local path
|
| 12 |
-
model_path = '
|
| 13 |
|
| 14 |
# Define custom objects to handle potential incompatibilities
|
| 15 |
custom_objects = {'DepthwiseConv2D': tf.keras.layers.DepthwiseConv2D}
|
| 16 |
|
| 17 |
# Load the model with custom_objects
|
| 18 |
-
model = load_model(model_path, custom_objects=custom_objects)
|
| 19 |
-
|
| 20 |
-
# ... (rest of your code)
|
| 21 |
-
|
| 22 |
-
# ... (rest of your code) # Load the model here
|
| 23 |
|
| 24 |
def predict_disease(image_file, model, all_labels):
|
| 25 |
-
|
| 26 |
try:
|
| 27 |
# Load and preprocess the image
|
| 28 |
img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
|
|
@@ -38,8 +33,8 @@ def predict_disease(image_file, model, all_labels):
|
|
| 38 |
predicted_label = all_labels[predicted_class]
|
| 39 |
|
| 40 |
# Print the predicted label to the console
|
| 41 |
-
|
| 42 |
-
if predicted_label=='
|
| 43 |
predicted_label = """<style>
|
| 44 |
li{
|
| 45 |
font-size: 15px;
|
|
@@ -70,20 +65,21 @@ def predict_disease(image_file, model, all_labels):
|
|
| 70 |
}
|
| 71 |
|
| 72 |
</style>
|
| 73 |
-
<h3><center><b>
|
| 74 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 75 |
<ul>
|
| 76 |
-
<li>1.
|
| 77 |
-
<li>2.
|
| 78 |
-
<li>3.
|
| 79 |
-
<li>4.
|
| 80 |
-
|
|
|
|
| 81 |
</ul><br>
|
| 82 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 83 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 84 |
|
| 85 |
"""
|
| 86 |
-
elif predicted_label=='
|
| 87 |
predicted_label = """
|
| 88 |
<style>
|
| 89 |
li{
|
|
@@ -115,22 +111,22 @@ def predict_disease(image_file, model, all_labels):
|
|
| 115 |
}
|
| 116 |
|
| 117 |
</style>
|
| 118 |
-
<h3><center><b>
|
| 119 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 120 |
<ul>
|
| 121 |
-
<li>1.
|
| 122 |
-
<li>2.
|
| 123 |
-
<li>3.
|
| 124 |
-
<li>4.
|
| 125 |
-
<li>5.
|
| 126 |
-
|
| 127 |
</ul>
|
| 128 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 129 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 130 |
|
| 131 |
|
| 132 |
"""
|
| 133 |
-
elif predicted_label=='
|
| 134 |
predicted_label = """
|
| 135 |
<style>
|
| 136 |
li{
|
|
@@ -162,15 +158,15 @@ def predict_disease(image_file, model, all_labels):
|
|
| 162 |
}
|
| 163 |
|
| 164 |
</style>
|
| 165 |
-
<h3><center><b>
|
| 166 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 167 |
<ul>
|
| 168 |
-
<li>1.
|
| 169 |
-
<li>2.
|
| 170 |
-
<li>3.
|
| 171 |
-
<li>4.
|
| 172 |
-
|
| 173 |
-
<li>
|
| 174 |
</ul>
|
| 175 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 176 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
|
@@ -178,7 +174,7 @@ def predict_disease(image_file, model, all_labels):
|
|
| 178 |
|
| 179 |
"""
|
| 180 |
|
| 181 |
-
elif predicted_label=='
|
| 182 |
predicted_label = """
|
| 183 |
<style>
|
| 184 |
li{
|
|
@@ -210,21 +206,22 @@ def predict_disease(image_file, model, all_labels):
|
|
| 210 |
}
|
| 211 |
|
| 212 |
</style>
|
| 213 |
-
<h3><center><b>
|
| 214 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 215 |
<ul>
|
| 216 |
-
<li>1.
|
| 217 |
-
<li>2.
|
| 218 |
-
<li>3.
|
| 219 |
-
<li>4.
|
| 220 |
-
<li>5.
|
|
|
|
| 221 |
</ul>
|
| 222 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 223 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 224 |
|
| 225 |
|
| 226 |
"""
|
| 227 |
-
elif predicted_label=='
|
| 228 |
predicted_label = """
|
| 229 |
<style>
|
| 230 |
li{
|
|
@@ -256,22 +253,22 @@ def predict_disease(image_file, model, all_labels):
|
|
| 256 |
}
|
| 257 |
|
| 258 |
</style>
|
| 259 |
-
<h3><center><b>
|
| 260 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 261 |
<ul>
|
| 262 |
<li>1. Imidacloprid</li>
|
| 263 |
<li>2. Thiamethoxam</li>
|
| 264 |
-
<li>3.
|
| 265 |
-
<li>4.
|
| 266 |
-
<li>5.
|
| 267 |
-
|
| 268 |
</ul>
|
| 269 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 270 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 271 |
|
| 272 |
|
| 273 |
"""
|
| 274 |
-
elif predicted_label=='
|
| 275 |
predicted_label = """
|
| 276 |
<style>
|
| 277 |
li{
|
|
@@ -303,14 +300,15 @@ def predict_disease(image_file, model, all_labels):
|
|
| 303 |
}
|
| 304 |
|
| 305 |
</style>
|
| 306 |
-
<h3><center><b>
|
| 307 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 308 |
<ul>
|
| 309 |
-
<li>1.
|
| 310 |
-
<li>2.
|
| 311 |
-
<li>3.
|
| 312 |
-
<li>4.
|
| 313 |
<li>5. Propiconazole</li>
|
|
|
|
| 314 |
</ul>
|
| 315 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 316 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
|
@@ -318,7 +316,7 @@ def predict_disease(image_file, model, all_labels):
|
|
| 318 |
|
| 319 |
"""
|
| 320 |
|
| 321 |
-
elif predicted_label=='
|
| 322 |
predicted_label = """
|
| 323 |
<style>
|
| 324 |
li{
|
|
@@ -350,106 +348,13 @@ def predict_disease(image_file, model, all_labels):
|
|
| 350 |
}
|
| 351 |
|
| 352 |
</style>
|
| 353 |
-
<h3><center><b>
|
| 354 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 355 |
<ul>
|
| 356 |
-
<li>1.
|
| 357 |
-
<li>2.
|
| 358 |
-
<li>3.
|
| 359 |
-
<li>4.
|
| 360 |
-
<li>5. Azoxystrobin</li>
|
| 361 |
-
|
| 362 |
-
</ul>
|
| 363 |
-
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 364 |
-
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
"""
|
| 368 |
-
elif predicted_label=='Tomato Early blight':
|
| 369 |
-
predicted_label = """
|
| 370 |
-
<style>
|
| 371 |
-
li{
|
| 372 |
-
font-size: 15px;
|
| 373 |
-
margin-left: 90px;
|
| 374 |
-
margin-top: 15px;
|
| 375 |
-
margin-bottom: 15px;
|
| 376 |
-
}
|
| 377 |
-
h4{
|
| 378 |
-
font-size: 17px;
|
| 379 |
-
margin-top: 15px;
|
| 380 |
-
}
|
| 381 |
-
h4:hover{
|
| 382 |
-
cursor: pointer;
|
| 383 |
-
}
|
| 384 |
-
|
| 385 |
-
h3:hover{
|
| 386 |
-
cursor: pointer;
|
| 387 |
-
color: blue;
|
| 388 |
-
transform: scale(1.3);
|
| 389 |
-
}
|
| 390 |
-
.note{
|
| 391 |
-
text-align: center;
|
| 392 |
-
font-size: 16px;
|
| 393 |
-
}
|
| 394 |
-
p{
|
| 395 |
-
font-size: 13px;
|
| 396 |
-
text-align: center;
|
| 397 |
-
}
|
| 398 |
-
|
| 399 |
-
</style>
|
| 400 |
-
<h3><center><b>Tomato blight</b></center></h3>
|
| 401 |
-
<h4>PESTICIDES TO BE USED:</h4>
|
| 402 |
-
<ul>
|
| 403 |
-
<li>1. Azoxystrobin</li>
|
| 404 |
-
<li>2. Boscalid</li>
|
| 405 |
-
<li>3. Mancozeb</li>
|
| 406 |
-
<li>4. Chlorothalonil</li>
|
| 407 |
-
<li>5. Propiconazole</li>
|
| 408 |
-
</ul>
|
| 409 |
-
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 410 |
-
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
"""
|
| 414 |
-
elif predicted_label=='Tomato Bacterial spot':
|
| 415 |
-
predicted_label = """
|
| 416 |
-
<style>
|
| 417 |
-
li{
|
| 418 |
-
font-size: 15px;
|
| 419 |
-
margin-left: 90px;
|
| 420 |
-
margin-top: 15px;
|
| 421 |
-
margin-bottom: 15px;
|
| 422 |
-
}
|
| 423 |
-
h4{
|
| 424 |
-
font-size: 17px;
|
| 425 |
-
margin-top: 15px;
|
| 426 |
-
}
|
| 427 |
-
h4:hover{
|
| 428 |
-
cursor: pointer;
|
| 429 |
-
}
|
| 430 |
-
|
| 431 |
-
h3:hover{
|
| 432 |
-
cursor: pointer;
|
| 433 |
-
color: blue;
|
| 434 |
-
transform: scale(1.3);
|
| 435 |
-
}
|
| 436 |
-
.note{
|
| 437 |
-
text-align: center;
|
| 438 |
-
font-size: 16px;
|
| 439 |
-
}
|
| 440 |
-
p{
|
| 441 |
-
font-size: 13px;
|
| 442 |
-
text-align: center;
|
| 443 |
-
}
|
| 444 |
-
|
| 445 |
-
</style>
|
| 446 |
-
<h3><center><b>Tomato Bacterial spot</b></center></h3>
|
| 447 |
-
<h4>PESTICIDES TO BE USED:</h4>
|
| 448 |
-
<ul>
|
| 449 |
-
<li>1. Copper oxychloride</li>
|
| 450 |
-
<li>2. Streptomycin</li>
|
| 451 |
-
<li>3. tetracycline</li>
|
| 452 |
-
<li>4. Oxytetracline(Terramycin)</li>
|
| 453 |
<li>5. Insecticidal soap</li>
|
| 454 |
<li>6. Horticultural oil</li>
|
| 455 |
</ul>
|
|
@@ -458,13 +363,9 @@ def predict_disease(image_file, model, all_labels):
|
|
| 458 |
|
| 459 |
|
| 460 |
"""
|
| 461 |
-
|
| 462 |
-
elif predicted_label=='Tomato Healthy':
|
| 463 |
-
|
| 464 |
-
predicted_label = """<h3 align="center">Tomato Healthy</h3><br><br>
|
| 465 |
-
<center>No need use Pesticides</center>"""
|
| 466 |
else:
|
| 467 |
-
|
|
|
|
| 468 |
|
| 469 |
return predicted_label
|
| 470 |
|
|
@@ -475,16 +376,14 @@ def predict_disease(image_file, model, all_labels):
|
|
| 475 |
|
| 476 |
# List of class labels
|
| 477 |
all_labels = [
|
| 478 |
-
'
|
| 479 |
-
'
|
| 480 |
-
'
|
| 481 |
-
'
|
| 482 |
-
'
|
| 483 |
-
'
|
| 484 |
-
'
|
| 485 |
-
'
|
| 486 |
-
'Tomato Early blight',
|
| 487 |
-
'Tomato Bacterial spot'
|
| 488 |
]
|
| 489 |
|
| 490 |
# Define the Gradio interface
|
|
@@ -496,10 +395,9 @@ gr_interface = gr.Interface(
|
|
| 496 |
fn=gradio_predict, # Function to call for predictions
|
| 497 |
inputs=gr.Image(type="filepath"), # Upload image as file path
|
| 498 |
outputs="html", # Output will be the class label as text
|
| 499 |
-
title="
|
| 500 |
description="Upload an image of a plant to predict the disease.",
|
| 501 |
)
|
| 502 |
|
| 503 |
# Launch the Gradio app
|
| 504 |
-
|
| 505 |
gr_interface.launch(share=True)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
# Import tensorflow here
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
# Load the pre-trained model from the local path
|
| 11 |
+
model_path = 'Mango.h5'
|
| 12 |
|
| 13 |
# Define custom objects to handle potential incompatibilities
|
| 14 |
custom_objects = {'DepthwiseConv2D': tf.keras.layers.DepthwiseConv2D}
|
| 15 |
|
| 16 |
# Load the model with custom_objects
|
| 17 |
+
model = load_model(model_path, custom_objects=custom_objects) # Load the model here
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def predict_disease(image_file, model, all_labels):
|
| 20 |
+
|
| 21 |
try:
|
| 22 |
# Load and preprocess the image
|
| 23 |
img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
|
|
|
|
| 33 |
predicted_label = all_labels[predicted_class]
|
| 34 |
|
| 35 |
# Print the predicted label to the console
|
| 36 |
+
|
| 37 |
+
if predicted_label=='Mango Anthracrose':
|
| 38 |
predicted_label = """<style>
|
| 39 |
li{
|
| 40 |
font-size: 15px;
|
|
|
|
| 65 |
}
|
| 66 |
|
| 67 |
</style>
|
| 68 |
+
<h3><center><b>Mango Anthracrose</b></center></h3>
|
| 69 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 70 |
<ul>
|
| 71 |
+
<li>1. Mancozeb</li>
|
| 72 |
+
<li>2. Azoxystrobin</li>
|
| 73 |
+
<li>3. carbendazim</li>
|
| 74 |
+
<li>4. Propiconazole</li>
|
| 75 |
+
<li>5. Thiophanate-methyl</li>
|
| 76 |
+
<li>6. Copper Sulfate</li>
|
| 77 |
</ul><br>
|
| 78 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 79 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 80 |
|
| 81 |
"""
|
| 82 |
+
elif predicted_label=='Mango Bacterial Canker':
|
| 83 |
predicted_label = """
|
| 84 |
<style>
|
| 85 |
li{
|
|
|
|
| 111 |
}
|
| 112 |
|
| 113 |
</style>
|
| 114 |
+
<h3><center><b>Mango Bacterial Canker</b></center></h3>
|
| 115 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 116 |
<ul>
|
| 117 |
+
<li>1. Copper Hydroxide</li>
|
| 118 |
+
<li>2. Copper Oxychloride</li>
|
| 119 |
+
<li>3. Streptomycin</li>
|
| 120 |
+
<li>4. oxytetracycline</li>
|
| 121 |
+
<li>5. Neem oil</li>
|
| 122 |
+
<li>6. Garlic oil</li>
|
| 123 |
</ul>
|
| 124 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 125 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 126 |
|
| 127 |
|
| 128 |
"""
|
| 129 |
+
elif predicted_label=='Mango Cutting Weevil':
|
| 130 |
predicted_label = """
|
| 131 |
<style>
|
| 132 |
li{
|
|
|
|
| 158 |
}
|
| 159 |
|
| 160 |
</style>
|
| 161 |
+
<h3><center><b>Mango Cutting Weevil</b></center></h3>
|
| 162 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 163 |
<ul>
|
| 164 |
+
<li>1. Imidacloprid</li>
|
| 165 |
+
<li>2. Thiamethoxam</li>
|
| 166 |
+
<li>3. Chlorpyrifos</li>
|
| 167 |
+
<li>4. Lambda-cyhalothrin</li>
|
| 168 |
+
<li>5. Fipronil</li>
|
| 169 |
+
<li>6. Neem oil</li>
|
| 170 |
</ul>
|
| 171 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 172 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
|
|
|
| 174 |
|
| 175 |
"""
|
| 176 |
|
| 177 |
+
elif predicted_label=='Mango Die Back':
|
| 178 |
predicted_label = """
|
| 179 |
<style>
|
| 180 |
li{
|
|
|
|
| 206 |
}
|
| 207 |
|
| 208 |
</style>
|
| 209 |
+
<h3><center><b>Mango Die Back</b></center></h3>
|
| 210 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 211 |
<ul>
|
| 212 |
+
<li>1. Carbendazim</li>
|
| 213 |
+
<li>2. Mancozeb</li>
|
| 214 |
+
<li>3. Azoxystrobin</li>
|
| 215 |
+
<li>4. Triazole</li>
|
| 216 |
+
<li>5. Potassium bicarbonate</li>
|
| 217 |
+
<li>6. Sodium bicarbonate</li>
|
| 218 |
</ul>
|
| 219 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 220 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 221 |
|
| 222 |
|
| 223 |
"""
|
| 224 |
+
elif predicted_label=='Mango Gall Midge':
|
| 225 |
predicted_label = """
|
| 226 |
<style>
|
| 227 |
li{
|
|
|
|
| 253 |
}
|
| 254 |
|
| 255 |
</style>
|
| 256 |
+
<h3><center><b>Mango Gall Midge</b></center></h3>
|
| 257 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 258 |
<ul>
|
| 259 |
<li>1. Imidacloprid</li>
|
| 260 |
<li>2. Thiamethoxam</li>
|
| 261 |
+
<li>3. Chlorpyrifos</li>
|
| 262 |
+
<li>4. Lambda-cyhalothrin</li>
|
| 263 |
+
<li>5. Spinosad</li>
|
| 264 |
+
<li>6. Pyrethrin</li>
|
| 265 |
</ul>
|
| 266 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 267 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 268 |
|
| 269 |
|
| 270 |
"""
|
| 271 |
+
elif predicted_label=='Mango Powdery Mildew':
|
| 272 |
predicted_label = """
|
| 273 |
<style>
|
| 274 |
li{
|
|
|
|
| 300 |
}
|
| 301 |
|
| 302 |
</style>
|
| 303 |
+
<h3><center><b>Mango Powdery Mildew</b></center></h3>
|
| 304 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 305 |
<ul>
|
| 306 |
+
<li>1. Sulfur</li>
|
| 307 |
+
<li>2. Bicarbonates</li>
|
| 308 |
+
<li>3. Myclobutanil</li>
|
| 309 |
+
<li>4. Triadimefon</li>
|
| 310 |
<li>5. Propiconazole</li>
|
| 311 |
+
<li>6. Azoxystrobin</li>
|
| 312 |
</ul>
|
| 313 |
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 314 |
<p>Be sure to follow local regulations and guidelines for application</p>
|
|
|
|
| 316 |
|
| 317 |
"""
|
| 318 |
|
| 319 |
+
elif predicted_label=='Mango Sooty Mould':
|
| 320 |
predicted_label = """
|
| 321 |
<style>
|
| 322 |
li{
|
|
|
|
| 348 |
}
|
| 349 |
|
| 350 |
</style>
|
| 351 |
+
<h3><center><b>Mango Sooty Mould</b></center></h3>
|
| 352 |
<h4>PESTICIDES TO BE USED:</h4>
|
| 353 |
<ul>
|
| 354 |
+
<li>1. Imidacloprid (Neonicotinoid)</li>
|
| 355 |
+
<li>2. Thiamethoxam (Neonicotinoid)</li>
|
| 356 |
+
<li>3. Bifenthrin (Pyrethroid)</li>
|
| 357 |
+
<li>4. Lambda-cyhalothrin (Pyrethroid)</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
<li>5. Insecticidal soap</li>
|
| 359 |
<li>6. Horticultural oil</li>
|
| 360 |
</ul>
|
|
|
|
| 363 |
|
| 364 |
|
| 365 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
else:
|
| 367 |
+
predicted_label = """<h3 align="center">Mango Healthy</h3><br><br>
|
| 368 |
+
<center>No need use Pesticides</center>"""
|
| 369 |
|
| 370 |
return predicted_label
|
| 371 |
|
|
|
|
| 376 |
|
| 377 |
# List of class labels
|
| 378 |
all_labels = [
|
| 379 |
+
'Mango Anthracrose',
|
| 380 |
+
'Mango Bacterial Canker',
|
| 381 |
+
'Mango Cutting Weevil',
|
| 382 |
+
'Mango Die Back',
|
| 383 |
+
'Mango Gall Midge',
|
| 384 |
+
'Mango Healthy',
|
| 385 |
+
'Mango Powdery Mildew',
|
| 386 |
+
'Mango Sooty Mould'
|
|
|
|
|
|
|
| 387 |
]
|
| 388 |
|
| 389 |
# Define the Gradio interface
|
|
|
|
| 395 |
fn=gradio_predict, # Function to call for predictions
|
| 396 |
inputs=gr.Image(type="filepath"), # Upload image as file path
|
| 397 |
outputs="html", # Output will be the class label as text
|
| 398 |
+
title="Plant Disease Predictor",
|
| 399 |
description="Upload an image of a plant to predict the disease.",
|
| 400 |
)
|
| 401 |
|
| 402 |
# Launch the Gradio app
|
|
|
|
| 403 |
gr_interface.launch(share=True)
|