Spaces:
Sleeping
Sleeping
Use huggingface_hub for pushing captions.json to Space repo;
Browse files- app.py +59 -17
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -5,32 +5,52 @@ import json
|
|
| 5 |
import uuid
|
| 6 |
import os
|
| 7 |
from PIL import Image
|
| 8 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
|
|
| 9 |
|
| 10 |
# Configure logging
|
| 11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
# Define output JSON path
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Initialize model and processor
|
| 18 |
try:
|
| 19 |
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
| 20 |
-
|
|
|
|
| 21 |
logger.info("Model and processor loaded successfully")
|
| 22 |
except Exception as e:
|
| 23 |
logger.error(f"Failed to load model or processor: {str(e)}")
|
| 24 |
raise
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
if not os.path.exists(OUTPUT_JSON_PATH):
|
| 28 |
-
with open(OUTPUT_JSON_PATH, 'w') as f:
|
| 29 |
-
json.dump([], f)
|
| 30 |
-
|
| 31 |
-
# Function to save results to JSON
|
| 32 |
def save_to_json(image_name: str, caption: str, caption_type: str, caption_length: str, error: str = None):
|
| 33 |
try:
|
|
|
|
| 34 |
with open(OUTPUT_JSON_PATH, 'r+') as f:
|
| 35 |
data = json.load(f)
|
| 36 |
data.append({
|
|
@@ -44,31 +64,50 @@ def save_to_json(image_name: str, caption: str, caption_type: str, caption_lengt
|
|
| 44 |
f.seek(0)
|
| 45 |
json.dump(data, f, indent=4)
|
| 46 |
logger.info(f"Saved result to {OUTPUT_JSON_PATH}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
except Exception as e:
|
| 48 |
-
logger.error(f"Error
|
| 49 |
|
| 50 |
# Define the captioning function
|
| 51 |
def generate_caption(input_image: Image, caption_type: str = "descriptive", caption_length: str = "medium", prompt: str = "") -> str:
|
|
|
|
| 52 |
if input_image is None:
|
| 53 |
error_msg = "Please upload an image."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
save_to_json("unknown", error_msg, caption_type, caption_length, error=error_msg)
|
| 55 |
return error_msg
|
| 56 |
|
| 57 |
# Generate a unique image name
|
| 58 |
image_name = f"image_{uuid.uuid4().hex}.jpg"
|
|
|
|
| 59 |
|
| 60 |
try:
|
| 61 |
-
# Resize image
|
|
|
|
| 62 |
input_image = input_image.resize((256, 256))
|
| 63 |
|
| 64 |
# Prepare prompt
|
| 65 |
if not prompt:
|
| 66 |
prompt = f"Generate a {caption_type} caption for this image."
|
|
|
|
| 67 |
|
| 68 |
# Prepare inputs
|
|
|
|
| 69 |
inputs = processor(images=input_image, text=prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 70 |
|
| 71 |
# Generate the caption
|
|
|
|
| 72 |
with torch.no_grad():
|
| 73 |
max_length = {"short": 20, "medium": 50, "long": 100}.get(caption_length, 50)
|
| 74 |
generated_ids = model.generate(
|
|
@@ -79,13 +118,16 @@ def generate_caption(input_image: Image, caption_type: str = "descriptive", capt
|
|
| 79 |
)
|
| 80 |
|
| 81 |
# Decode the output
|
|
|
|
| 82 |
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 83 |
|
| 84 |
# Clean up caption
|
| 85 |
if caption.lower().startswith(("generate a", "write a")):
|
| 86 |
caption = caption.split(".", 1)[1].strip() if "." in caption else caption
|
|
|
|
| 87 |
|
| 88 |
-
# Save to JSON
|
|
|
|
| 89 |
save_to_json(image_name, caption, caption_type, caption_length, error=None)
|
| 90 |
return caption
|
| 91 |
except Exception as e:
|
|
@@ -109,7 +151,7 @@ def view_caption_history():
|
|
| 109 |
def batch_generate_captions(image_list, caption_type: str = "descriptive", caption_length: str = "medium", prompt: str = ""):
|
| 110 |
results = []
|
| 111 |
for img in image_list:
|
| 112 |
-
|
| 113 |
img_pil = Image.open(img.name).convert("RGB")
|
| 114 |
caption = generate_caption(img_pil, caption_type, caption_length, prompt)
|
| 115 |
results.append(f"Image {os.path.basename(img.name)}: {caption}")
|
|
@@ -118,7 +160,7 @@ def batch_generate_captions(image_list, caption_type: str = "descriptive", capti
|
|
| 118 |
# Create Gradio Blocks interface
|
| 119 |
with gr.Blocks(title="Image Captioning with GIT") as demo:
|
| 120 |
gr.Markdown("# Image Captioning with GIT")
|
| 121 |
-
gr.Markdown("Upload an image or multiple images to generate captions using the Microsoft/git-large-coco model. Results are saved to captions.json.")
|
| 122 |
|
| 123 |
# Tab for single image captioning
|
| 124 |
with gr.Tab("Single Image Captioning"):
|
|
@@ -129,7 +171,7 @@ with gr.Blocks(title="Image Captioning with GIT") as demo:
|
|
| 129 |
single_caption_length = gr.Dropdown(choices=["short", "medium", "long"], label="Caption Length", value="medium")
|
| 130 |
single_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt for the model")
|
| 131 |
single_submit = gr.Button("Generate Caption")
|
| 132 |
-
single_output = gr.Textbox(label="Generated Caption")
|
| 133 |
single_submit.click(
|
| 134 |
fn=generate_caption,
|
| 135 |
inputs=[single_image_input, single_caption_type, single_caption_length, single_prompt],
|
|
@@ -138,7 +180,7 @@ with gr.Blocks(title="Image Captioning with GIT") as demo:
|
|
| 138 |
|
| 139 |
# Tab for viewing caption history
|
| 140 |
with gr.Tab("Caption History"):
|
| 141 |
-
history_output = gr.Textbox(label="Caption History")
|
| 142 |
history_button = gr.Button("View History")
|
| 143 |
history_button.click(
|
| 144 |
fn=view_caption_history,
|
|
@@ -155,7 +197,7 @@ with gr.Blocks(title="Image Captioning with GIT") as demo:
|
|
| 155 |
batch_caption_length = gr.Dropdown(choices=["short", "medium", "long"], label="Caption Length", value="medium")
|
| 156 |
batch_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt for the model")
|
| 157 |
batch_submit = gr.Button("Generate Captions")
|
| 158 |
-
batch_output = gr.Textbox(label="Batch Caption Results")
|
| 159 |
batch_submit.click(
|
| 160 |
fn=batch_generate_captions,
|
| 161 |
inputs=[batch_image_input, batch_caption_type, batch_caption_length, batch_prompt],
|
|
|
|
| 5 |
import uuid
|
| 6 |
import os
|
| 7 |
from PIL import Image
|
| 8 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, BitsAndBytesConfig
|
| 9 |
+
from huggingface_hub import HfApi, Repository
|
| 10 |
|
| 11 |
# Configure logging
|
| 12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
# Define output JSON path
|
| 16 |
+
OUTPUT_DIR = "outputs"
|
| 17 |
+
OUTPUT_JSON_PATH = os.path.join(OUTPUT_DIR, "captions.json")
|
| 18 |
+
|
| 19 |
+
# Initialize Hugging Face API and repository
|
| 20 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 21 |
+
REPO_URL = "https://huggingface.co/spaces/retromarz/plavu_microsoft-git-large"
|
| 22 |
+
try:
|
| 23 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 24 |
+
if not os.path.exists(OUTPUT_JSON_PATH):
|
| 25 |
+
with open(OUTPUT_JSON_PATH, 'w') as f:
|
| 26 |
+
json.dump([], f)
|
| 27 |
+
repo = Repository(
|
| 28 |
+
local_dir=".", # Use current directory (Space's repo root)
|
| 29 |
+
clone_from=REPO_URL,
|
| 30 |
+
use_auth_token=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,
|
| 31 |
+
git_user="retromarz",
|
| 32 |
+
git_email="ma@pnz.de"
|
| 33 |
+
)
|
| 34 |
+
repo.lfs_track([OUTPUT_JSON_PATH]) # Track large files if needed
|
| 35 |
+
logger.info("Hugging Face repository initialized")
|
| 36 |
+
except Exception as e:
|
| 37 |
+
logger.error(f"Failed to initialize repository: {str(e)}")
|
| 38 |
+
raise
|
| 39 |
|
| 40 |
# Initialize model and processor
|
| 41 |
try:
|
| 42 |
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
| 43 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True) if torch.cuda.is_available() else None
|
| 44 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco", quantization_config=quantization_config).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
logger.info("Model and processor loaded successfully")
|
| 46 |
except Exception as e:
|
| 47 |
logger.error(f"Failed to load model or processor: {str(e)}")
|
| 48 |
raise
|
| 49 |
|
| 50 |
+
# Function to save results to JSON and push to Git
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def save_to_json(image_name: str, caption: str, caption_type: str, caption_length: str, error: str = None):
|
| 52 |
try:
|
| 53 |
+
# Write to local JSON
|
| 54 |
with open(OUTPUT_JSON_PATH, 'r+') as f:
|
| 55 |
data = json.load(f)
|
| 56 |
data.append({
|
|
|
|
| 64 |
f.seek(0)
|
| 65 |
json.dump(data, f, indent=4)
|
| 66 |
logger.info(f"Saved result to {OUTPUT_JSON_PATH}")
|
| 67 |
+
|
| 68 |
+
# Commit and push to Space repo
|
| 69 |
+
repo.git_add(OUTPUT_JSON_PATH)
|
| 70 |
+
repo.git_commit(f"Update captions.json with new caption for {image_name}")
|
| 71 |
+
repo.git_push()
|
| 72 |
+
logger.info("Pushed captions.json to Hugging Face Space repository")
|
| 73 |
except Exception as e:
|
| 74 |
+
logger.error(f"Error saving to JSON or pushing to Git: {str(e)}")
|
| 75 |
|
| 76 |
# Define the captioning function
|
| 77 |
def generate_caption(input_image: Image, caption_type: str = "descriptive", caption_length: str = "medium", prompt: str = "") -> str:
|
| 78 |
+
logger.info("Starting generate_caption")
|
| 79 |
if input_image is None:
|
| 80 |
error_msg = "Please upload an image."
|
| 81 |
+
logger.error(error_msg)
|
| 82 |
+
save_to_json("unknown", error_msg, caption_type, caption_length, error=error_msg)
|
| 83 |
+
return error_msg
|
| 84 |
+
if not isinstance(input_image, Image.Image):
|
| 85 |
+
error_msg = "Invalid image format. Please upload a valid JPG or PNG image."
|
| 86 |
+
logger.error(error_msg)
|
| 87 |
save_to_json("unknown", error_msg, caption_type, caption_length, error=error_msg)
|
| 88 |
return error_msg
|
| 89 |
|
| 90 |
# Generate a unique image name
|
| 91 |
image_name = f"image_{uuid.uuid4().hex}.jpg"
|
| 92 |
+
logger.info(f"Generated image name: {image_name}")
|
| 93 |
|
| 94 |
try:
|
| 95 |
+
# Resize image
|
| 96 |
+
logger.info("Resizing image")
|
| 97 |
input_image = input_image.resize((256, 256))
|
| 98 |
|
| 99 |
# Prepare prompt
|
| 100 |
if not prompt:
|
| 101 |
prompt = f"Generate a {caption_type} caption for this image."
|
| 102 |
+
logger.info(f"Prompt: {prompt}")
|
| 103 |
|
| 104 |
# Prepare inputs
|
| 105 |
+
logger.info("Processing image with processor")
|
| 106 |
inputs = processor(images=input_image, text=prompt, return_tensors="pt").to(model.device)
|
| 107 |
+
logger.info(f"Inputs prepared: {inputs.keys()}")
|
| 108 |
|
| 109 |
# Generate the caption
|
| 110 |
+
logger.info("Generating caption")
|
| 111 |
with torch.no_grad():
|
| 112 |
max_length = {"short": 20, "medium": 50, "long": 100}.get(caption_length, 50)
|
| 113 |
generated_ids = model.generate(
|
|
|
|
| 118 |
)
|
| 119 |
|
| 120 |
# Decode the output
|
| 121 |
+
logger.info("Decoding caption")
|
| 122 |
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 123 |
|
| 124 |
# Clean up caption
|
| 125 |
if caption.lower().startswith(("generate a", "write a")):
|
| 126 |
caption = caption.split(".", 1)[1].strip() if "." in caption else caption
|
| 127 |
+
logger.info(f"Generated caption: {caption}")
|
| 128 |
|
| 129 |
+
# Save to JSON and push to Git
|
| 130 |
+
logger.info("Saving to JSON")
|
| 131 |
save_to_json(image_name, caption, caption_type, caption_length, error=None)
|
| 132 |
return caption
|
| 133 |
except Exception as e:
|
|
|
|
| 151 |
def batch_generate_captions(image_list, caption_type: str = "descriptive", caption_length: str = "medium", prompt: str = ""):
|
| 152 |
results = []
|
| 153 |
for img in image_list:
|
| 154 |
+
logger.info(f"Processing batch image: {img.name}")
|
| 155 |
img_pil = Image.open(img.name).convert("RGB")
|
| 156 |
caption = generate_caption(img_pil, caption_type, caption_length, prompt)
|
| 157 |
results.append(f"Image {os.path.basename(img.name)}: {caption}")
|
|
|
|
| 160 |
# Create Gradio Blocks interface
|
| 161 |
with gr.Blocks(title="Image Captioning with GIT") as demo:
|
| 162 |
gr.Markdown("# Image Captioning with GIT")
|
| 163 |
+
gr.Markdown("Upload an image or multiple images to generate captions using the Microsoft/git-large-coco model. Results are saved to outputs/captions.json and pushed to the Git repository.")
|
| 164 |
|
| 165 |
# Tab for single image captioning
|
| 166 |
with gr.Tab("Single Image Captioning"):
|
|
|
|
| 171 |
single_caption_length = gr.Dropdown(choices=["short", "medium", "long"], label="Caption Length", value="medium")
|
| 172 |
single_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt for the model")
|
| 173 |
single_submit = gr.Button("Generate Caption")
|
| 174 |
+
single_output = gr.Textbox(label="Generated Caption", placeholder="Caption will appear here")
|
| 175 |
single_submit.click(
|
| 176 |
fn=generate_caption,
|
| 177 |
inputs=[single_image_input, single_caption_type, single_caption_length, single_prompt],
|
|
|
|
| 180 |
|
| 181 |
# Tab for viewing caption history
|
| 182 |
with gr.Tab("Caption History"):
|
| 183 |
+
history_output = gr.Textbox(label="Caption History", placeholder="History will appear here")
|
| 184 |
history_button = gr.Button("View History")
|
| 185 |
history_button.click(
|
| 186 |
fn=view_caption_history,
|
|
|
|
| 197 |
batch_caption_length = gr.Dropdown(choices=["short", "medium", "long"], label="Caption Length", value="medium")
|
| 198 |
batch_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt for the model")
|
| 199 |
batch_submit = gr.Button("Generate Captions")
|
| 200 |
+
batch_output = gr.Textbox(label="Batch Caption Results", placeholder="Batch results will appear here")
|
| 201 |
batch_submit.click(
|
| 202 |
fn=batch_generate_captions,
|
| 203 |
inputs=[batch_image_input, batch_caption_type, batch_caption_length, batch_prompt],
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ gradio>=4.0.0
|
|
| 2 |
transformers>=4.37.0
|
| 3 |
torch>=2.0.0
|
| 4 |
pillow>=9.0.0
|
| 5 |
-
|
|
|
|
|
|
| 2 |
transformers>=4.37.0
|
| 3 |
torch>=2.0.0
|
| 4 |
pillow>=9.0.0
|
| 5 |
+
bitsandbytes>=0.43.0
|
| 6 |
+
huggingface_hub>=0.23.0
|