Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,19 @@
|
|
| 1 |
-
|
| 2 |
-
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
from peft import PeftModel
|
|
|
|
| 5 |
|
| 6 |
-
# Load base model without quantization for CPU compatibility
|
| 7 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
-
"
|
| 9 |
torch_dtype=torch.float16,
|
| 10 |
-
device_map="
|
| 11 |
-
|
| 12 |
)
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 16 |
-
|
| 17 |
-
# Add padding token if it doesn't exist
|
| 18 |
-
if tokenizer.pad_token is None:
|
| 19 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 20 |
|
| 21 |
-
#
|
| 22 |
model = PeftModel.from_pretrained(base_model, "rezaenayati/RezAi-Model")
|
| 23 |
|
| 24 |
def chat_with_rezAi(messages, history):
|
|
@@ -30,19 +25,18 @@ def chat_with_rezAi(messages, history):
|
|
| 30 |
|
| 31 |
conversation += f"<|start_header_id|>user<|end_header_id|>\n{messages}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
|
| 32 |
|
| 33 |
-
inputs = tokenizer([conversation], return_tensors="pt"
|
| 34 |
|
| 35 |
with torch.no_grad():
|
| 36 |
outputs = model.generate(
|
| 37 |
-
|
| 38 |
max_new_tokens=128,
|
| 39 |
temperature=0.5,
|
| 40 |
do_sample=True,
|
| 41 |
-
pad_token_id=tokenizer.eos_token_id
|
| 42 |
-
attention_mask=inputs['attention_mask']
|
| 43 |
)
|
| 44 |
|
| 45 |
-
#
|
| 46 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 47 |
new_response = response.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
| 48 |
|
|
|
|
| 1 |
+
mport torch
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from peft import PeftModel
|
| 4 |
+
import gradio as gr
|
| 5 |
|
|
|
|
| 6 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 7 |
+
"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
|
| 8 |
torch_dtype=torch.float16,
|
| 9 |
+
device_map="auto",
|
| 10 |
+
load_in_4bit=True
|
| 11 |
)
|
| 12 |
|
| 13 |
+
# tokenizer
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# LoRA adaptors
|
| 17 |
model = PeftModel.from_pretrained(base_model, "rezaenayati/RezAi-Model")
|
| 18 |
|
| 19 |
def chat_with_rezAi(messages, history):
|
|
|
|
| 25 |
|
| 26 |
conversation += f"<|start_header_id|>user<|end_header_id|>\n{messages}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
|
| 27 |
|
| 28 |
+
inputs = tokenizer([conversation], return_tensors="pt")
|
| 29 |
|
| 30 |
with torch.no_grad():
|
| 31 |
outputs = model.generate(
|
| 32 |
+
inputs,
|
| 33 |
max_new_tokens=128,
|
| 34 |
temperature=0.5,
|
| 35 |
do_sample=True,
|
| 36 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
|
| 37 |
)
|
| 38 |
|
| 39 |
+
# get response
|
| 40 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 41 |
new_response = response.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
| 42 |
|