Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,86 +2,81 @@ import torch
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from peft import PeftModel
|
| 4 |
import gradio as gr
|
| 5 |
-
import spaces
|
| 6 |
|
| 7 |
-
# Load models
|
| 8 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
|
| 10 |
torch_dtype=torch.float16,
|
| 11 |
-
device_map="auto",
|
| 12 |
trust_remote_code=True
|
| 13 |
)
|
| 14 |
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
| 16 |
|
| 17 |
-
# Add padding token if missing
|
| 18 |
if tokenizer.pad_token is None:
|
| 19 |
tokenizer.pad_token = tokenizer.eos_token
|
| 20 |
|
| 21 |
# Load LoRA adapter
|
| 22 |
model = PeftModel.from_pretrained(base_model, "rezaenayati/RezAi-Model")
|
| 23 |
|
| 24 |
-
@spaces.GPU
|
| 25 |
def chat_with_rezAi(messages, history):
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
# Add conversation history
|
| 29 |
for user_msg, assistant_msg in history:
|
| 30 |
-
conversation += f"<|start_header_id|>user<|end_header_id|>\n{user_msg}<|eot_id|>"
|
| 31 |
-
conversation += f"<|start_header_id|>assistant<|end_header_id|>\n{assistant_msg}<|eot_id|>"
|
| 32 |
|
| 33 |
# Add current message
|
| 34 |
-
conversation += f"<|start_header_id|>user<|end_header_id|>\n{messages}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
|
| 35 |
|
| 36 |
-
# Tokenize
|
| 37 |
inputs = tokenizer(
|
| 38 |
-
conversation,
|
| 39 |
-
return_tensors="pt",
|
| 40 |
-
truncation=True,
|
| 41 |
max_length=2048
|
| 42 |
)
|
| 43 |
|
| 44 |
-
# Move
|
| 45 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 46 |
|
| 47 |
-
# Generate
|
| 48 |
with torch.no_grad():
|
| 49 |
outputs = model.generate(
|
| 50 |
**inputs,
|
| 51 |
-
max_new_tokens=
|
| 52 |
-
temperature=0.
|
| 53 |
do_sample=True,
|
| 54 |
pad_token_id=tokenizer.eos_token_id,
|
| 55 |
-
eos_token_id=tokenizer.eos_token_id
|
| 56 |
-
repetition_penalty=1.1 # Added to reduce repetition
|
| 57 |
)
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
new_response = response.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
| 62 |
|
| 63 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
if "<|" in new_response:
|
| 65 |
new_response = new_response.split("<|")[0].strip()
|
| 66 |
|
| 67 |
return new_response
|
| 68 |
|
| 69 |
-
#
|
| 70 |
demo = gr.ChatInterface(
|
| 71 |
fn=chat_with_rezAi,
|
| 72 |
-
title="
|
| 73 |
-
description="
|
| 74 |
-
examples=[
|
| 75 |
-
"Tell me about your background",
|
| 76 |
-
"What programming languages do you know?",
|
| 77 |
-
"Walk me through RezAI",
|
| 78 |
-
"What's your experience with machine learning?",
|
| 79 |
-
"How did you get into computer science?"
|
| 80 |
-
],
|
| 81 |
-
retry_btn=None,
|
| 82 |
-
undo_btn="Delete Previous",
|
| 83 |
-
clear_btn="Clear Chat",
|
| 84 |
-
theme=gr.themes.Soft(), # Added a nice theme
|
| 85 |
)
|
| 86 |
|
| 87 |
if __name__ == "__main__":
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from peft import PeftModel
|
| 4 |
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
|
| 7 |
+
# Load models
|
| 8 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
|
| 10 |
torch_dtype=torch.float16,
|
| 11 |
+
device_map="auto",
|
| 12 |
trust_remote_code=True
|
| 13 |
)
|
| 14 |
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
| 16 |
|
|
|
|
| 17 |
if tokenizer.pad_token is None:
|
| 18 |
tokenizer.pad_token = tokenizer.eos_token
|
| 19 |
|
| 20 |
# Load LoRA adapter
|
| 21 |
model = PeftModel.from_pretrained(base_model, "rezaenayati/RezAi-Model")
|
| 22 |
|
| 23 |
+
@spaces.GPU
|
| 24 |
def chat_with_rezAi(messages, history):
|
| 25 |
+
# Build conversation with proper formatting
|
| 26 |
+
conversation = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are Reza Enayati, a Computer Science student and entrepreneur from Los Angeles, who is eager to work as a software engineer or machine learning engineer. Answer these questions as if you are in an interview.<|eot_id|>"
|
| 27 |
|
| 28 |
# Add conversation history
|
| 29 |
for user_msg, assistant_msg in history:
|
| 30 |
+
conversation += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
|
| 31 |
+
conversation += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
|
| 32 |
|
| 33 |
# Add current message
|
| 34 |
+
conversation += f"<|start_header_id|>user<|end_header_id|>\n\n{messages}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
| 35 |
|
| 36 |
+
# Tokenize
|
| 37 |
inputs = tokenizer(
|
| 38 |
+
conversation,
|
| 39 |
+
return_tensors="pt",
|
| 40 |
+
truncation=True,
|
| 41 |
max_length=2048
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# Move to device
|
| 45 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 46 |
|
| 47 |
+
# Generate with higher temperature
|
| 48 |
with torch.no_grad():
|
| 49 |
outputs = model.generate(
|
| 50 |
**inputs,
|
| 51 |
+
max_new_tokens=150,
|
| 52 |
+
temperature=0.5, # You asked for 5, but that's too high (0.5 is good)
|
| 53 |
do_sample=True,
|
| 54 |
pad_token_id=tokenizer.eos_token_id,
|
| 55 |
+
eos_token_id=tokenizer.eos_token_id
|
|
|
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# Extract ONLY the new assistant response
|
| 59 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 60 |
|
| 61 |
+
# Split by the last assistant header and get only the new response
|
| 62 |
+
if "<|start_header_id|>assistant<|end_header_id|>" in full_response:
|
| 63 |
+
response_parts = full_response.split("<|start_header_id|>assistant<|end_header_id|>")
|
| 64 |
+
new_response = response_parts[-1].strip()
|
| 65 |
+
else:
|
| 66 |
+
new_response = full_response.strip()
|
| 67 |
+
|
| 68 |
+
# Clean up any remaining special tokens or incomplete parts
|
| 69 |
+
new_response = new_response.replace("<|eot_id|>", "").strip()
|
| 70 |
if "<|" in new_response:
|
| 71 |
new_response = new_response.split("<|")[0].strip()
|
| 72 |
|
| 73 |
return new_response
|
| 74 |
|
| 75 |
+
# Simple Gradio interface
|
| 76 |
demo = gr.ChatInterface(
|
| 77 |
fn=chat_with_rezAi,
|
| 78 |
+
title="Chat with RezAI",
|
| 79 |
+
description="Ask me about Reza's background and experience!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
if __name__ == "__main__":
|