Spaces:
Runtime error
Runtime error
Added non-gpu ops
Browse files- model/sg2_model.py +6 -1
- op/__init__.py +0 -2
- op/conv2d_gradfix.py +227 -227
- op/fused_act.py +86 -119
- op/fused_act_cpu.py +41 -0
- op/fused_bias_act.cpp +20 -31
- op/fused_bias_act_kernel.cu +98 -104
- op/upfirdn2d.cpp +22 -30
- op/upfirdn2d.py +187 -209
- op/upfirdn2d_cpu.py +60 -0
- op/upfirdn2d_kernel.cu +271 -368
model/sg2_model.py
CHANGED
|
@@ -8,7 +8,12 @@ from torch import nn
|
|
| 8 |
from torch.nn import functional as F
|
| 9 |
from torch.autograd import Function
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
class PixelNorm(nn.Module):
|
|
|
|
| 8 |
from torch.nn import functional as F
|
| 9 |
from torch.autograd import Function
|
| 10 |
|
| 11 |
+
if torch.cuda.is_available():
|
| 12 |
+
from op.fused_act import FusedLeakyReLU, fused_leaky_relu
|
| 13 |
+
from op.upfirdn2d import upfirdn2d
|
| 14 |
+
else:
|
| 15 |
+
from op.fused_act_cpu import FusedLeakyReLU, fused_leaky_relu
|
| 16 |
+
from op.upfirdn2d_cpu import upfirdn2d
|
| 17 |
|
| 18 |
|
| 19 |
class PixelNorm(nn.Module):
|
op/__init__.py
CHANGED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
| 2 |
-
from .upfirdn2d import upfirdn2d
|
|
|
|
|
|
|
|
|
op/conv2d_gradfix.py
CHANGED
|
@@ -1,227 +1,227 @@
|
|
| 1 |
-
import contextlib
|
| 2 |
-
import warnings
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from torch import autograd
|
| 6 |
-
from torch.nn import functional as F
|
| 7 |
-
|
| 8 |
-
enabled = True
|
| 9 |
-
weight_gradients_disabled = False
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
@contextlib.contextmanager
|
| 13 |
-
def no_weight_gradients():
|
| 14 |
-
global weight_gradients_disabled
|
| 15 |
-
|
| 16 |
-
old = weight_gradients_disabled
|
| 17 |
-
weight_gradients_disabled = True
|
| 18 |
-
yield
|
| 19 |
-
weight_gradients_disabled = old
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
| 23 |
-
if could_use_op(input):
|
| 24 |
-
return conv2d_gradfix(
|
| 25 |
-
transpose=False,
|
| 26 |
-
weight_shape=weight.shape,
|
| 27 |
-
stride=stride,
|
| 28 |
-
padding=padding,
|
| 29 |
-
output_padding=0,
|
| 30 |
-
dilation=dilation,
|
| 31 |
-
groups=groups,
|
| 32 |
-
).apply(input, weight, bias)
|
| 33 |
-
|
| 34 |
-
return F.conv2d(
|
| 35 |
-
input=input,
|
| 36 |
-
weight=weight,
|
| 37 |
-
bias=bias,
|
| 38 |
-
stride=stride,
|
| 39 |
-
padding=padding,
|
| 40 |
-
dilation=dilation,
|
| 41 |
-
groups=groups,
|
| 42 |
-
)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def conv_transpose2d(
|
| 46 |
-
input,
|
| 47 |
-
weight,
|
| 48 |
-
bias=None,
|
| 49 |
-
stride=1,
|
| 50 |
-
padding=0,
|
| 51 |
-
output_padding=0,
|
| 52 |
-
groups=1,
|
| 53 |
-
dilation=1,
|
| 54 |
-
):
|
| 55 |
-
if could_use_op(input):
|
| 56 |
-
return conv2d_gradfix(
|
| 57 |
-
transpose=True,
|
| 58 |
-
weight_shape=weight.shape,
|
| 59 |
-
stride=stride,
|
| 60 |
-
padding=padding,
|
| 61 |
-
output_padding=output_padding,
|
| 62 |
-
groups=groups,
|
| 63 |
-
dilation=dilation,
|
| 64 |
-
).apply(input, weight, bias)
|
| 65 |
-
|
| 66 |
-
return F.conv_transpose2d(
|
| 67 |
-
input=input,
|
| 68 |
-
weight=weight,
|
| 69 |
-
bias=bias,
|
| 70 |
-
stride=stride,
|
| 71 |
-
padding=padding,
|
| 72 |
-
output_padding=output_padding,
|
| 73 |
-
dilation=dilation,
|
| 74 |
-
groups=groups,
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
def could_use_op(input):
|
| 79 |
-
if (not enabled) or (not torch.backends.cudnn.enabled):
|
| 80 |
-
return False
|
| 81 |
-
|
| 82 |
-
if input.device.type != "cuda":
|
| 83 |
-
return False
|
| 84 |
-
|
| 85 |
-
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
| 86 |
-
return True
|
| 87 |
-
|
| 88 |
-
warnings.warn(
|
| 89 |
-
f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()."
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
return False
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def ensure_tuple(xs, ndim):
|
| 96 |
-
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
| 97 |
-
|
| 98 |
-
return xs
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
conv2d_gradfix_cache = dict()
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def conv2d_gradfix(
|
| 105 |
-
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
| 106 |
-
):
|
| 107 |
-
ndim = 2
|
| 108 |
-
weight_shape = tuple(weight_shape)
|
| 109 |
-
stride = ensure_tuple(stride, ndim)
|
| 110 |
-
padding = ensure_tuple(padding, ndim)
|
| 111 |
-
output_padding = ensure_tuple(output_padding, ndim)
|
| 112 |
-
dilation = ensure_tuple(dilation, ndim)
|
| 113 |
-
|
| 114 |
-
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
| 115 |
-
if key in conv2d_gradfix_cache:
|
| 116 |
-
return conv2d_gradfix_cache[key]
|
| 117 |
-
|
| 118 |
-
common_kwargs = dict(
|
| 119 |
-
stride=stride, padding=padding, dilation=dilation, groups=groups
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
def calc_output_padding(input_shape, output_shape):
|
| 123 |
-
if transpose:
|
| 124 |
-
return [0, 0]
|
| 125 |
-
|
| 126 |
-
return [
|
| 127 |
-
input_shape[i + 2]
|
| 128 |
-
- (output_shape[i + 2] - 1) * stride[i]
|
| 129 |
-
- (1 - 2 * padding[i])
|
| 130 |
-
- dilation[i] * (weight_shape[i + 2] - 1)
|
| 131 |
-
for i in range(ndim)
|
| 132 |
-
]
|
| 133 |
-
|
| 134 |
-
class Conv2d(autograd.Function):
|
| 135 |
-
@staticmethod
|
| 136 |
-
def forward(ctx, input, weight, bias):
|
| 137 |
-
if not transpose:
|
| 138 |
-
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
| 139 |
-
|
| 140 |
-
else:
|
| 141 |
-
out = F.conv_transpose2d(
|
| 142 |
-
input=input,
|
| 143 |
-
weight=weight,
|
| 144 |
-
bias=bias,
|
| 145 |
-
output_padding=output_padding,
|
| 146 |
-
**common_kwargs,
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
ctx.save_for_backward(input, weight)
|
| 150 |
-
|
| 151 |
-
return out
|
| 152 |
-
|
| 153 |
-
@staticmethod
|
| 154 |
-
def backward(ctx, grad_output):
|
| 155 |
-
input, weight = ctx.saved_tensors
|
| 156 |
-
grad_input, grad_weight, grad_bias = None, None, None
|
| 157 |
-
|
| 158 |
-
if ctx.needs_input_grad[0]:
|
| 159 |
-
p = calc_output_padding(
|
| 160 |
-
input_shape=input.shape, output_shape=grad_output.shape
|
| 161 |
-
)
|
| 162 |
-
grad_input = conv2d_gradfix(
|
| 163 |
-
transpose=(not transpose),
|
| 164 |
-
weight_shape=weight_shape,
|
| 165 |
-
output_padding=p,
|
| 166 |
-
**common_kwargs,
|
| 167 |
-
).apply(grad_output, weight, None)
|
| 168 |
-
|
| 169 |
-
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
| 170 |
-
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
| 171 |
-
|
| 172 |
-
if ctx.needs_input_grad[2]:
|
| 173 |
-
grad_bias = grad_output.sum((0, 2, 3))
|
| 174 |
-
|
| 175 |
-
return grad_input, grad_weight, grad_bias
|
| 176 |
-
|
| 177 |
-
class Conv2dGradWeight(autograd.Function):
|
| 178 |
-
@staticmethod
|
| 179 |
-
def forward(ctx, grad_output, input):
|
| 180 |
-
op = torch._C._jit_get_operation(
|
| 181 |
-
"aten::cudnn_convolution_backward_weight"
|
| 182 |
-
if not transpose
|
| 183 |
-
else "aten::cudnn_convolution_transpose_backward_weight"
|
| 184 |
-
)
|
| 185 |
-
flags = [
|
| 186 |
-
torch.backends.cudnn.benchmark,
|
| 187 |
-
torch.backends.cudnn.deterministic,
|
| 188 |
-
torch.backends.cudnn.allow_tf32,
|
| 189 |
-
]
|
| 190 |
-
grad_weight = op(
|
| 191 |
-
weight_shape,
|
| 192 |
-
grad_output,
|
| 193 |
-
input,
|
| 194 |
-
padding,
|
| 195 |
-
stride,
|
| 196 |
-
dilation,
|
| 197 |
-
groups,
|
| 198 |
-
*flags,
|
| 199 |
-
)
|
| 200 |
-
ctx.save_for_backward(grad_output, input)
|
| 201 |
-
|
| 202 |
-
return grad_weight
|
| 203 |
-
|
| 204 |
-
@staticmethod
|
| 205 |
-
def backward(ctx, grad_grad_weight):
|
| 206 |
-
grad_output, input = ctx.saved_tensors
|
| 207 |
-
grad_grad_output, grad_grad_input = None, None
|
| 208 |
-
|
| 209 |
-
if ctx.needs_input_grad[0]:
|
| 210 |
-
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
| 211 |
-
|
| 212 |
-
if ctx.needs_input_grad[1]:
|
| 213 |
-
p = calc_output_padding(
|
| 214 |
-
input_shape=input.shape, output_shape=grad_output.shape
|
| 215 |
-
)
|
| 216 |
-
grad_grad_input = conv2d_gradfix(
|
| 217 |
-
transpose=(not transpose),
|
| 218 |
-
weight_shape=weight_shape,
|
| 219 |
-
output_padding=p,
|
| 220 |
-
**common_kwargs,
|
| 221 |
-
).apply(grad_output, grad_grad_weight, None)
|
| 222 |
-
|
| 223 |
-
return grad_grad_output, grad_grad_input
|
| 224 |
-
|
| 225 |
-
conv2d_gradfix_cache[key] = Conv2d
|
| 226 |
-
|
| 227 |
-
return Conv2d
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import autograd
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
enabled = True
|
| 9 |
+
weight_gradients_disabled = False
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@contextlib.contextmanager
|
| 13 |
+
def no_weight_gradients():
|
| 14 |
+
global weight_gradients_disabled
|
| 15 |
+
|
| 16 |
+
old = weight_gradients_disabled
|
| 17 |
+
weight_gradients_disabled = True
|
| 18 |
+
yield
|
| 19 |
+
weight_gradients_disabled = old
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
| 23 |
+
if could_use_op(input):
|
| 24 |
+
return conv2d_gradfix(
|
| 25 |
+
transpose=False,
|
| 26 |
+
weight_shape=weight.shape,
|
| 27 |
+
stride=stride,
|
| 28 |
+
padding=padding,
|
| 29 |
+
output_padding=0,
|
| 30 |
+
dilation=dilation,
|
| 31 |
+
groups=groups,
|
| 32 |
+
).apply(input, weight, bias)
|
| 33 |
+
|
| 34 |
+
return F.conv2d(
|
| 35 |
+
input=input,
|
| 36 |
+
weight=weight,
|
| 37 |
+
bias=bias,
|
| 38 |
+
stride=stride,
|
| 39 |
+
padding=padding,
|
| 40 |
+
dilation=dilation,
|
| 41 |
+
groups=groups,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def conv_transpose2d(
|
| 46 |
+
input,
|
| 47 |
+
weight,
|
| 48 |
+
bias=None,
|
| 49 |
+
stride=1,
|
| 50 |
+
padding=0,
|
| 51 |
+
output_padding=0,
|
| 52 |
+
groups=1,
|
| 53 |
+
dilation=1,
|
| 54 |
+
):
|
| 55 |
+
if could_use_op(input):
|
| 56 |
+
return conv2d_gradfix(
|
| 57 |
+
transpose=True,
|
| 58 |
+
weight_shape=weight.shape,
|
| 59 |
+
stride=stride,
|
| 60 |
+
padding=padding,
|
| 61 |
+
output_padding=output_padding,
|
| 62 |
+
groups=groups,
|
| 63 |
+
dilation=dilation,
|
| 64 |
+
).apply(input, weight, bias)
|
| 65 |
+
|
| 66 |
+
return F.conv_transpose2d(
|
| 67 |
+
input=input,
|
| 68 |
+
weight=weight,
|
| 69 |
+
bias=bias,
|
| 70 |
+
stride=stride,
|
| 71 |
+
padding=padding,
|
| 72 |
+
output_padding=output_padding,
|
| 73 |
+
dilation=dilation,
|
| 74 |
+
groups=groups,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def could_use_op(input):
|
| 79 |
+
if (not enabled) or (not torch.backends.cudnn.enabled):
|
| 80 |
+
return False
|
| 81 |
+
|
| 82 |
+
if input.device.type != "cuda":
|
| 83 |
+
return False
|
| 84 |
+
|
| 85 |
+
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
| 86 |
+
return True
|
| 87 |
+
|
| 88 |
+
warnings.warn(
|
| 89 |
+
f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()."
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
return False
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def ensure_tuple(xs, ndim):
|
| 96 |
+
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
| 97 |
+
|
| 98 |
+
return xs
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
conv2d_gradfix_cache = dict()
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def conv2d_gradfix(
|
| 105 |
+
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
| 106 |
+
):
|
| 107 |
+
ndim = 2
|
| 108 |
+
weight_shape = tuple(weight_shape)
|
| 109 |
+
stride = ensure_tuple(stride, ndim)
|
| 110 |
+
padding = ensure_tuple(padding, ndim)
|
| 111 |
+
output_padding = ensure_tuple(output_padding, ndim)
|
| 112 |
+
dilation = ensure_tuple(dilation, ndim)
|
| 113 |
+
|
| 114 |
+
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
| 115 |
+
if key in conv2d_gradfix_cache:
|
| 116 |
+
return conv2d_gradfix_cache[key]
|
| 117 |
+
|
| 118 |
+
common_kwargs = dict(
|
| 119 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
def calc_output_padding(input_shape, output_shape):
|
| 123 |
+
if transpose:
|
| 124 |
+
return [0, 0]
|
| 125 |
+
|
| 126 |
+
return [
|
| 127 |
+
input_shape[i + 2]
|
| 128 |
+
- (output_shape[i + 2] - 1) * stride[i]
|
| 129 |
+
- (1 - 2 * padding[i])
|
| 130 |
+
- dilation[i] * (weight_shape[i + 2] - 1)
|
| 131 |
+
for i in range(ndim)
|
| 132 |
+
]
|
| 133 |
+
|
| 134 |
+
class Conv2d(autograd.Function):
|
| 135 |
+
@staticmethod
|
| 136 |
+
def forward(ctx, input, weight, bias):
|
| 137 |
+
if not transpose:
|
| 138 |
+
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
| 139 |
+
|
| 140 |
+
else:
|
| 141 |
+
out = F.conv_transpose2d(
|
| 142 |
+
input=input,
|
| 143 |
+
weight=weight,
|
| 144 |
+
bias=bias,
|
| 145 |
+
output_padding=output_padding,
|
| 146 |
+
**common_kwargs,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
ctx.save_for_backward(input, weight)
|
| 150 |
+
|
| 151 |
+
return out
|
| 152 |
+
|
| 153 |
+
@staticmethod
|
| 154 |
+
def backward(ctx, grad_output):
|
| 155 |
+
input, weight = ctx.saved_tensors
|
| 156 |
+
grad_input, grad_weight, grad_bias = None, None, None
|
| 157 |
+
|
| 158 |
+
if ctx.needs_input_grad[0]:
|
| 159 |
+
p = calc_output_padding(
|
| 160 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
| 161 |
+
)
|
| 162 |
+
grad_input = conv2d_gradfix(
|
| 163 |
+
transpose=(not transpose),
|
| 164 |
+
weight_shape=weight_shape,
|
| 165 |
+
output_padding=p,
|
| 166 |
+
**common_kwargs,
|
| 167 |
+
).apply(grad_output, weight, None)
|
| 168 |
+
|
| 169 |
+
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
| 170 |
+
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
| 171 |
+
|
| 172 |
+
if ctx.needs_input_grad[2]:
|
| 173 |
+
grad_bias = grad_output.sum((0, 2, 3))
|
| 174 |
+
|
| 175 |
+
return grad_input, grad_weight, grad_bias
|
| 176 |
+
|
| 177 |
+
class Conv2dGradWeight(autograd.Function):
|
| 178 |
+
@staticmethod
|
| 179 |
+
def forward(ctx, grad_output, input):
|
| 180 |
+
op = torch._C._jit_get_operation(
|
| 181 |
+
"aten::cudnn_convolution_backward_weight"
|
| 182 |
+
if not transpose
|
| 183 |
+
else "aten::cudnn_convolution_transpose_backward_weight"
|
| 184 |
+
)
|
| 185 |
+
flags = [
|
| 186 |
+
torch.backends.cudnn.benchmark,
|
| 187 |
+
torch.backends.cudnn.deterministic,
|
| 188 |
+
torch.backends.cudnn.allow_tf32,
|
| 189 |
+
]
|
| 190 |
+
grad_weight = op(
|
| 191 |
+
weight_shape,
|
| 192 |
+
grad_output,
|
| 193 |
+
input,
|
| 194 |
+
padding,
|
| 195 |
+
stride,
|
| 196 |
+
dilation,
|
| 197 |
+
groups,
|
| 198 |
+
*flags,
|
| 199 |
+
)
|
| 200 |
+
ctx.save_for_backward(grad_output, input)
|
| 201 |
+
|
| 202 |
+
return grad_weight
|
| 203 |
+
|
| 204 |
+
@staticmethod
|
| 205 |
+
def backward(ctx, grad_grad_weight):
|
| 206 |
+
grad_output, input = ctx.saved_tensors
|
| 207 |
+
grad_grad_output, grad_grad_input = None, None
|
| 208 |
+
|
| 209 |
+
if ctx.needs_input_grad[0]:
|
| 210 |
+
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
| 211 |
+
|
| 212 |
+
if ctx.needs_input_grad[1]:
|
| 213 |
+
p = calc_output_padding(
|
| 214 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
| 215 |
+
)
|
| 216 |
+
grad_grad_input = conv2d_gradfix(
|
| 217 |
+
transpose=(not transpose),
|
| 218 |
+
weight_shape=weight_shape,
|
| 219 |
+
output_padding=p,
|
| 220 |
+
**common_kwargs,
|
| 221 |
+
).apply(grad_output, grad_grad_weight, None)
|
| 222 |
+
|
| 223 |
+
return grad_grad_output, grad_grad_input
|
| 224 |
+
|
| 225 |
+
conv2d_gradfix_cache[key] = Conv2d
|
| 226 |
+
|
| 227 |
+
return Conv2d
|
op/fused_act.py
CHANGED
|
@@ -1,119 +1,86 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
from torch import nn
|
| 5 |
-
from torch.
|
| 6 |
-
from torch.
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
fused
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
os.path.join(module_path,
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
ctx.
|
| 24 |
-
ctx.
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
class FusedLeakyReLU(nn.Module):
|
| 88 |
-
def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5):
|
| 89 |
-
super().__init__()
|
| 90 |
-
|
| 91 |
-
if bias:
|
| 92 |
-
self.bias = nn.Parameter(torch.zeros(channel))
|
| 93 |
-
|
| 94 |
-
else:
|
| 95 |
-
self.bias = None
|
| 96 |
-
|
| 97 |
-
self.negative_slope = negative_slope
|
| 98 |
-
self.scale = scale
|
| 99 |
-
|
| 100 |
-
def forward(self, input):
|
| 101 |
-
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
| 105 |
-
if input.device.type == "cpu":
|
| 106 |
-
if bias is not None:
|
| 107 |
-
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
| 108 |
-
return (
|
| 109 |
-
F.leaky_relu(
|
| 110 |
-
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
| 111 |
-
)
|
| 112 |
-
* scale
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
else:
|
| 116 |
-
return F.leaky_relu(input, negative_slope=0.2) * scale
|
| 117 |
-
|
| 118 |
-
else:
|
| 119 |
-
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.autograd import Function
|
| 6 |
+
from torch.utils.cpp_extension import load
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
module_path = os.path.dirname(__file__)
|
| 10 |
+
fused = load(
|
| 11 |
+
'fused',
|
| 12 |
+
sources=[
|
| 13 |
+
os.path.join(module_path, 'fused_bias_act.cpp'),
|
| 14 |
+
os.path.join(module_path, 'fused_bias_act_kernel.cu'),
|
| 15 |
+
],
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
| 20 |
+
@staticmethod
|
| 21 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
| 22 |
+
ctx.save_for_backward(out)
|
| 23 |
+
ctx.negative_slope = negative_slope
|
| 24 |
+
ctx.scale = scale
|
| 25 |
+
|
| 26 |
+
empty = grad_output.new_empty(0)
|
| 27 |
+
|
| 28 |
+
grad_input = fused.fused_bias_act(
|
| 29 |
+
grad_output, empty, out, 3, 1, negative_slope, scale
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
dim = [0]
|
| 33 |
+
|
| 34 |
+
if grad_input.ndim > 2:
|
| 35 |
+
dim += list(range(2, grad_input.ndim))
|
| 36 |
+
|
| 37 |
+
grad_bias = grad_input.sum(dim).detach()
|
| 38 |
+
|
| 39 |
+
return grad_input, grad_bias
|
| 40 |
+
|
| 41 |
+
@staticmethod
|
| 42 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
| 43 |
+
out, = ctx.saved_tensors
|
| 44 |
+
gradgrad_out = fused.fused_bias_act(
|
| 45 |
+
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
return gradgrad_out, None, None, None
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class FusedLeakyReLUFunction(Function):
|
| 52 |
+
@staticmethod
|
| 53 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
| 54 |
+
empty = input.new_empty(0)
|
| 55 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
| 56 |
+
ctx.save_for_backward(out)
|
| 57 |
+
ctx.negative_slope = negative_slope
|
| 58 |
+
ctx.scale = scale
|
| 59 |
+
|
| 60 |
+
return out
|
| 61 |
+
|
| 62 |
+
@staticmethod
|
| 63 |
+
def backward(ctx, grad_output):
|
| 64 |
+
out, = ctx.saved_tensors
|
| 65 |
+
|
| 66 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
| 67 |
+
grad_output, out, ctx.negative_slope, ctx.scale
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return grad_input, grad_bias, None, None
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class FusedLeakyReLU(nn.Module):
|
| 74 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
| 75 |
+
super().__init__()
|
| 76 |
+
|
| 77 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
| 78 |
+
self.negative_slope = negative_slope
|
| 79 |
+
self.scale = scale
|
| 80 |
+
|
| 81 |
+
def forward(self, input):
|
| 82 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
| 86 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
op/fused_act_cpu.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.autograd import Function
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
module_path = os.path.dirname(__file__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class FusedLeakyReLU(nn.Module):
|
| 13 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
| 14 |
+
super().__init__()
|
| 15 |
+
|
| 16 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
| 17 |
+
self.negative_slope = negative_slope
|
| 18 |
+
self.scale = scale
|
| 19 |
+
|
| 20 |
+
def forward(self, input):
|
| 21 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
| 22 |
+
|
| 23 |
+
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
| 24 |
+
if input.device.type == "cpu":
|
| 25 |
+
if bias is not None:
|
| 26 |
+
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
| 27 |
+
return (
|
| 28 |
+
F.leaky_relu(
|
| 29 |
+
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
| 30 |
+
)
|
| 31 |
+
* scale
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
else:
|
| 35 |
+
return F.leaky_relu(input, negative_slope=0.2) * scale
|
| 36 |
+
|
| 37 |
+
else:
|
| 38 |
+
return FusedLeakyReLUFunction.apply(
|
| 39 |
+
input.contiguous(), bias, negative_slope, scale
|
| 40 |
+
)
|
| 41 |
+
|
op/fused_bias_act.cpp
CHANGED
|
@@ -1,32 +1,21 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
float alpha, float scale) {
|
| 22 |
-
CHECK_INPUT(input);
|
| 23 |
-
CHECK_INPUT(bias);
|
| 24 |
-
|
| 25 |
-
at::DeviceGuard guard(input.device());
|
| 26 |
-
|
| 27 |
-
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
| 28 |
-
}
|
| 29 |
-
|
| 30 |
-
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 31 |
-
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
| 32 |
}
|
|
|
|
| 1 |
+
#include <torch/extension.h>
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
| 5 |
+
int act, int grad, float alpha, float scale);
|
| 6 |
+
|
| 7 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
| 8 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
| 9 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
| 10 |
+
|
| 11 |
+
torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
| 12 |
+
int act, int grad, float alpha, float scale) {
|
| 13 |
+
CHECK_CUDA(input);
|
| 14 |
+
CHECK_CUDA(bias);
|
| 15 |
+
|
| 16 |
+
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 20 |
+
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
}
|
op/fused_bias_act_kernel.cu
CHANGED
|
@@ -1,105 +1,99 @@
|
|
| 1 |
-
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
| 2 |
-
//
|
| 3 |
-
// This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
-
// To view a copy of this license, visit
|
| 5 |
-
// https://nvlabs.github.io/stylegan2/license.html
|
| 6 |
-
|
| 7 |
-
#include <torch/types.h>
|
| 8 |
-
|
| 9 |
-
#include <ATen/ATen.h>
|
| 10 |
-
#include <ATen/AccumulateType.h>
|
| 11 |
-
#include <ATen/cuda/
|
| 12 |
-
#include <ATen/cuda/
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
#include <
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
template <typename scalar_t>
|
| 19 |
-
static __global__ void
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
y.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
| 100 |
-
b.data_ptr<scalar_t>(), ref.data_ptr<scalar_t>(), act, grad, alpha,
|
| 101 |
-
scale, loop_x, size_x, step_b, size_b, use_bias, use_ref);
|
| 102 |
-
});
|
| 103 |
-
|
| 104 |
-
return y;
|
| 105 |
}
|
|
|
|
| 1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
| 2 |
+
//
|
| 3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
+
// To view a copy of this license, visit
|
| 5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
| 6 |
+
|
| 7 |
+
#include <torch/types.h>
|
| 8 |
+
|
| 9 |
+
#include <ATen/ATen.h>
|
| 10 |
+
#include <ATen/AccumulateType.h>
|
| 11 |
+
#include <ATen/cuda/CUDAContext.h>
|
| 12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
| 13 |
+
|
| 14 |
+
#include <cuda.h>
|
| 15 |
+
#include <cuda_runtime.h>
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
template <typename scalar_t>
|
| 19 |
+
static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
|
| 20 |
+
int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
|
| 21 |
+
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
|
| 22 |
+
|
| 23 |
+
scalar_t zero = 0.0;
|
| 24 |
+
|
| 25 |
+
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
|
| 26 |
+
scalar_t x = p_x[xi];
|
| 27 |
+
|
| 28 |
+
if (use_bias) {
|
| 29 |
+
x += p_b[(xi / step_b) % size_b];
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
scalar_t ref = use_ref ? p_ref[xi] : zero;
|
| 33 |
+
|
| 34 |
+
scalar_t y;
|
| 35 |
+
|
| 36 |
+
switch (act * 10 + grad) {
|
| 37 |
+
default:
|
| 38 |
+
case 10: y = x; break;
|
| 39 |
+
case 11: y = x; break;
|
| 40 |
+
case 12: y = 0.0; break;
|
| 41 |
+
|
| 42 |
+
case 30: y = (x > 0.0) ? x : x * alpha; break;
|
| 43 |
+
case 31: y = (ref > 0.0) ? x : x * alpha; break;
|
| 44 |
+
case 32: y = 0.0; break;
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
out[xi] = y * scale;
|
| 48 |
+
}
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
| 53 |
+
int act, int grad, float alpha, float scale) {
|
| 54 |
+
int curDevice = -1;
|
| 55 |
+
cudaGetDevice(&curDevice);
|
| 56 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
| 57 |
+
|
| 58 |
+
auto x = input.contiguous();
|
| 59 |
+
auto b = bias.contiguous();
|
| 60 |
+
auto ref = refer.contiguous();
|
| 61 |
+
|
| 62 |
+
int use_bias = b.numel() ? 1 : 0;
|
| 63 |
+
int use_ref = ref.numel() ? 1 : 0;
|
| 64 |
+
|
| 65 |
+
int size_x = x.numel();
|
| 66 |
+
int size_b = b.numel();
|
| 67 |
+
int step_b = 1;
|
| 68 |
+
|
| 69 |
+
for (int i = 1 + 1; i < x.dim(); i++) {
|
| 70 |
+
step_b *= x.size(i);
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
int loop_x = 4;
|
| 74 |
+
int block_size = 4 * 32;
|
| 75 |
+
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
|
| 76 |
+
|
| 77 |
+
auto y = torch::empty_like(x);
|
| 78 |
+
|
| 79 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
|
| 80 |
+
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
| 81 |
+
y.data_ptr<scalar_t>(),
|
| 82 |
+
x.data_ptr<scalar_t>(),
|
| 83 |
+
b.data_ptr<scalar_t>(),
|
| 84 |
+
ref.data_ptr<scalar_t>(),
|
| 85 |
+
act,
|
| 86 |
+
grad,
|
| 87 |
+
alpha,
|
| 88 |
+
scale,
|
| 89 |
+
loop_x,
|
| 90 |
+
size_x,
|
| 91 |
+
step_b,
|
| 92 |
+
size_b,
|
| 93 |
+
use_bias,
|
| 94 |
+
use_ref
|
| 95 |
+
);
|
| 96 |
+
});
|
| 97 |
+
|
| 98 |
+
return y;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
}
|
op/upfirdn2d.cpp
CHANGED
|
@@ -1,31 +1,23 @@
|
|
| 1 |
-
#include <
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
torch::Tensor upfirdn2d_op(const torch::Tensor
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
#define
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
at::DeviceGuard guard(input.device());
|
| 24 |
-
|
| 25 |
-
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1,
|
| 26 |
-
pad_y0, pad_y1);
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 30 |
-
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
| 31 |
}
|
|
|
|
| 1 |
+
#include <torch/extension.h>
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
| 5 |
+
int up_x, int up_y, int down_x, int down_y,
|
| 6 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1);
|
| 7 |
+
|
| 8 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
| 9 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
| 10 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
| 11 |
+
|
| 12 |
+
torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
|
| 13 |
+
int up_x, int up_y, int down_x, int down_y,
|
| 14 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
| 15 |
+
CHECK_CUDA(input);
|
| 16 |
+
CHECK_CUDA(kernel);
|
| 17 |
+
|
| 18 |
+
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 22 |
+
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
}
|
op/upfirdn2d.py
CHANGED
|
@@ -1,209 +1,187 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
from torch.
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
ctx.
|
| 51 |
-
ctx.
|
| 52 |
-
ctx.
|
| 53 |
-
ctx.
|
| 54 |
-
ctx.
|
| 55 |
-
ctx.
|
| 56 |
-
ctx.
|
| 57 |
-
ctx.
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
ctx.
|
| 73 |
-
ctx.
|
| 74 |
-
ctx.
|
| 75 |
-
ctx.
|
| 76 |
-
ctx.
|
| 77 |
-
ctx.
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
ctx.
|
| 107 |
-
|
| 108 |
-
ctx.
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
out
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
out =
|
| 178 |
-
out =
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
)
|
| 184 |
-
out = out
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
:,
|
| 189 |
-
]
|
| 190 |
-
|
| 191 |
-
out = out.permute(0, 3, 1, 2)
|
| 192 |
-
out = out.reshape(
|
| 193 |
-
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
| 194 |
-
)
|
| 195 |
-
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
| 196 |
-
out = F.conv2d(out, w)
|
| 197 |
-
out = out.reshape(
|
| 198 |
-
-1,
|
| 199 |
-
minor,
|
| 200 |
-
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
| 201 |
-
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
| 202 |
-
)
|
| 203 |
-
out = out.permute(0, 2, 3, 1)
|
| 204 |
-
out = out[:, ::down_y, ::down_x, :]
|
| 205 |
-
|
| 206 |
-
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
| 207 |
-
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
| 208 |
-
|
| 209 |
-
return out.view(-1, channel, out_h, out_w)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.autograd import Function
|
| 5 |
+
from torch.utils.cpp_extension import load
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
module_path = os.path.dirname(__file__)
|
| 9 |
+
upfirdn2d_op = load(
|
| 10 |
+
'upfirdn2d',
|
| 11 |
+
sources=[
|
| 12 |
+
os.path.join(module_path, 'upfirdn2d.cpp'),
|
| 13 |
+
os.path.join(module_path, 'upfirdn2d_kernel.cu'),
|
| 14 |
+
],
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class UpFirDn2dBackward(Function):
|
| 19 |
+
@staticmethod
|
| 20 |
+
def forward(
|
| 21 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
| 22 |
+
):
|
| 23 |
+
|
| 24 |
+
up_x, up_y = up
|
| 25 |
+
down_x, down_y = down
|
| 26 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
| 27 |
+
|
| 28 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
| 29 |
+
|
| 30 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
| 31 |
+
grad_output,
|
| 32 |
+
grad_kernel,
|
| 33 |
+
down_x,
|
| 34 |
+
down_y,
|
| 35 |
+
up_x,
|
| 36 |
+
up_y,
|
| 37 |
+
g_pad_x0,
|
| 38 |
+
g_pad_x1,
|
| 39 |
+
g_pad_y0,
|
| 40 |
+
g_pad_y1,
|
| 41 |
+
)
|
| 42 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
| 43 |
+
|
| 44 |
+
ctx.save_for_backward(kernel)
|
| 45 |
+
|
| 46 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
| 47 |
+
|
| 48 |
+
ctx.up_x = up_x
|
| 49 |
+
ctx.up_y = up_y
|
| 50 |
+
ctx.down_x = down_x
|
| 51 |
+
ctx.down_y = down_y
|
| 52 |
+
ctx.pad_x0 = pad_x0
|
| 53 |
+
ctx.pad_x1 = pad_x1
|
| 54 |
+
ctx.pad_y0 = pad_y0
|
| 55 |
+
ctx.pad_y1 = pad_y1
|
| 56 |
+
ctx.in_size = in_size
|
| 57 |
+
ctx.out_size = out_size
|
| 58 |
+
|
| 59 |
+
return grad_input
|
| 60 |
+
|
| 61 |
+
@staticmethod
|
| 62 |
+
def backward(ctx, gradgrad_input):
|
| 63 |
+
kernel, = ctx.saved_tensors
|
| 64 |
+
|
| 65 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
| 66 |
+
|
| 67 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
| 68 |
+
gradgrad_input,
|
| 69 |
+
kernel,
|
| 70 |
+
ctx.up_x,
|
| 71 |
+
ctx.up_y,
|
| 72 |
+
ctx.down_x,
|
| 73 |
+
ctx.down_y,
|
| 74 |
+
ctx.pad_x0,
|
| 75 |
+
ctx.pad_x1,
|
| 76 |
+
ctx.pad_y0,
|
| 77 |
+
ctx.pad_y1,
|
| 78 |
+
)
|
| 79 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
| 80 |
+
gradgrad_out = gradgrad_out.view(
|
| 81 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class UpFirDn2d(Function):
|
| 88 |
+
@staticmethod
|
| 89 |
+
def forward(ctx, input, kernel, up, down, pad):
|
| 90 |
+
up_x, up_y = up
|
| 91 |
+
down_x, down_y = down
|
| 92 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
| 93 |
+
|
| 94 |
+
kernel_h, kernel_w = kernel.shape
|
| 95 |
+
batch, channel, in_h, in_w = input.shape
|
| 96 |
+
ctx.in_size = input.shape
|
| 97 |
+
|
| 98 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
| 99 |
+
|
| 100 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
| 101 |
+
|
| 102 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
| 103 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
| 104 |
+
ctx.out_size = (out_h, out_w)
|
| 105 |
+
|
| 106 |
+
ctx.up = (up_x, up_y)
|
| 107 |
+
ctx.down = (down_x, down_y)
|
| 108 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
| 109 |
+
|
| 110 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
| 111 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
| 112 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
| 113 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
| 114 |
+
|
| 115 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
| 116 |
+
|
| 117 |
+
out = upfirdn2d_op.upfirdn2d(
|
| 118 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
| 119 |
+
)
|
| 120 |
+
# out = out.view(major, out_h, out_w, minor)
|
| 121 |
+
out = out.view(-1, channel, out_h, out_w)
|
| 122 |
+
|
| 123 |
+
return out
|
| 124 |
+
|
| 125 |
+
@staticmethod
|
| 126 |
+
def backward(ctx, grad_output):
|
| 127 |
+
kernel, grad_kernel = ctx.saved_tensors
|
| 128 |
+
|
| 129 |
+
grad_input = UpFirDn2dBackward.apply(
|
| 130 |
+
grad_output,
|
| 131 |
+
kernel,
|
| 132 |
+
grad_kernel,
|
| 133 |
+
ctx.up,
|
| 134 |
+
ctx.down,
|
| 135 |
+
ctx.pad,
|
| 136 |
+
ctx.g_pad,
|
| 137 |
+
ctx.in_size,
|
| 138 |
+
ctx.out_size,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
return grad_input, None, None, None, None
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
| 145 |
+
out = UpFirDn2d.apply(
|
| 146 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
return out
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def upfirdn2d_native(
|
| 153 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
| 154 |
+
):
|
| 155 |
+
_, in_h, in_w, minor = input.shape
|
| 156 |
+
kernel_h, kernel_w = kernel.shape
|
| 157 |
+
|
| 158 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
| 159 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
| 160 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
| 161 |
+
|
| 162 |
+
out = F.pad(
|
| 163 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
| 164 |
+
)
|
| 165 |
+
out = out[
|
| 166 |
+
:,
|
| 167 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
| 168 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
| 169 |
+
:,
|
| 170 |
+
]
|
| 171 |
+
|
| 172 |
+
out = out.permute(0, 3, 1, 2)
|
| 173 |
+
out = out.reshape(
|
| 174 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
| 175 |
+
)
|
| 176 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
| 177 |
+
out = F.conv2d(out, w)
|
| 178 |
+
out = out.reshape(
|
| 179 |
+
-1,
|
| 180 |
+
minor,
|
| 181 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
| 182 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
| 183 |
+
)
|
| 184 |
+
out = out.permute(0, 2, 3, 1)
|
| 185 |
+
|
| 186 |
+
return out[:, ::down_y, ::down_x, :]
|
| 187 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
op/upfirdn2d_cpu.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.autograd import Function
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
module_path = os.path.dirname(__file__)
|
| 10 |
+
|
| 11 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
| 12 |
+
out = upfirdn2d_native(
|
| 13 |
+
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
return out
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def upfirdn2d_native(
|
| 20 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
| 21 |
+
):
|
| 22 |
+
_, channel, in_h, in_w = input.shape
|
| 23 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
| 24 |
+
|
| 25 |
+
_, in_h, in_w, minor = input.shape
|
| 26 |
+
kernel_h, kernel_w = kernel.shape
|
| 27 |
+
|
| 28 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
| 29 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
| 30 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
| 31 |
+
|
| 32 |
+
out = F.pad(
|
| 33 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
| 34 |
+
)
|
| 35 |
+
out = out[
|
| 36 |
+
:,
|
| 37 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
| 38 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
| 39 |
+
:,
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
out = out.permute(0, 3, 1, 2)
|
| 43 |
+
out = out.reshape(
|
| 44 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
| 45 |
+
)
|
| 46 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
| 47 |
+
out = F.conv2d(out, w)
|
| 48 |
+
out = out.reshape(
|
| 49 |
+
-1,
|
| 50 |
+
minor,
|
| 51 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
| 52 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
| 53 |
+
)
|
| 54 |
+
out = out.permute(0, 2, 3, 1)
|
| 55 |
+
out = out[:, ::down_y, ::down_x, :]
|
| 56 |
+
|
| 57 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
| 58 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
| 59 |
+
|
| 60 |
+
return out.view(-1, channel, out_h, out_w)
|
op/upfirdn2d_kernel.cu
CHANGED
|
@@ -1,369 +1,272 @@
|
|
| 1 |
-
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
| 2 |
-
//
|
| 3 |
-
// This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
-
// To view a copy of this license, visit
|
| 5 |
-
// https://nvlabs.github.io/stylegan2/license.html
|
| 6 |
-
|
| 7 |
-
#include <torch/types.h>
|
| 8 |
-
|
| 9 |
-
#include <ATen/ATen.h>
|
| 10 |
-
#include <ATen/AccumulateType.h>
|
| 11 |
-
#include <ATen/cuda/
|
| 12 |
-
#include <ATen/cuda/
|
| 13 |
-
|
| 14 |
-
#include <cuda.h>
|
| 15 |
-
#include <cuda_runtime.h>
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
c
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
}
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
}
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
| 273 |
-
mode = 4;
|
| 274 |
-
tile_out_h = 16;
|
| 275 |
-
tile_out_w = 64;
|
| 276 |
-
}
|
| 277 |
-
|
| 278 |
-
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
| 279 |
-
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
| 280 |
-
mode = 5;
|
| 281 |
-
tile_out_h = 8;
|
| 282 |
-
tile_out_w = 32;
|
| 283 |
-
}
|
| 284 |
-
|
| 285 |
-
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
| 286 |
-
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
| 287 |
-
mode = 6;
|
| 288 |
-
tile_out_h = 8;
|
| 289 |
-
tile_out_w = 32;
|
| 290 |
-
}
|
| 291 |
-
|
| 292 |
-
dim3 block_size;
|
| 293 |
-
dim3 grid_size;
|
| 294 |
-
|
| 295 |
-
if (tile_out_h > 0 && tile_out_w > 0) {
|
| 296 |
-
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
| 297 |
-
p.loop_x = 1;
|
| 298 |
-
block_size = dim3(32 * 8, 1, 1);
|
| 299 |
-
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
| 300 |
-
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
| 301 |
-
(p.major_dim - 1) / p.loop_major + 1);
|
| 302 |
-
} else {
|
| 303 |
-
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
| 304 |
-
p.loop_x = 4;
|
| 305 |
-
block_size = dim3(4, 32, 1);
|
| 306 |
-
grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
|
| 307 |
-
(p.out_w - 1) / (p.loop_x * block_size.y) + 1,
|
| 308 |
-
(p.major_dim - 1) / p.loop_major + 1);
|
| 309 |
-
}
|
| 310 |
-
|
| 311 |
-
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
| 312 |
-
switch (mode) {
|
| 313 |
-
case 1:
|
| 314 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64>
|
| 315 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
| 316 |
-
x.data_ptr<scalar_t>(),
|
| 317 |
-
k.data_ptr<scalar_t>(), p);
|
| 318 |
-
|
| 319 |
-
break;
|
| 320 |
-
|
| 321 |
-
case 2:
|
| 322 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64>
|
| 323 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
| 324 |
-
x.data_ptr<scalar_t>(),
|
| 325 |
-
k.data_ptr<scalar_t>(), p);
|
| 326 |
-
|
| 327 |
-
break;
|
| 328 |
-
|
| 329 |
-
case 3:
|
| 330 |
-
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64>
|
| 331 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
| 332 |
-
x.data_ptr<scalar_t>(),
|
| 333 |
-
k.data_ptr<scalar_t>(), p);
|
| 334 |
-
|
| 335 |
-
break;
|
| 336 |
-
|
| 337 |
-
case 4:
|
| 338 |
-
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64>
|
| 339 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
| 340 |
-
x.data_ptr<scalar_t>(),
|
| 341 |
-
k.data_ptr<scalar_t>(), p);
|
| 342 |
-
|
| 343 |
-
break;
|
| 344 |
-
|
| 345 |
-
case 5:
|
| 346 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
| 347 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
| 348 |
-
x.data_ptr<scalar_t>(),
|
| 349 |
-
k.data_ptr<scalar_t>(), p);
|
| 350 |
-
|
| 351 |
-
break;
|
| 352 |
-
|
| 353 |
-
case 6:
|
| 354 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
| 355 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
| 356 |
-
x.data_ptr<scalar_t>(),
|
| 357 |
-
k.data_ptr<scalar_t>(), p);
|
| 358 |
-
|
| 359 |
-
break;
|
| 360 |
-
|
| 361 |
-
default:
|
| 362 |
-
upfirdn2d_kernel_large<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
| 363 |
-
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
| 364 |
-
k.data_ptr<scalar_t>(), p);
|
| 365 |
-
}
|
| 366 |
-
});
|
| 367 |
-
|
| 368 |
-
return out;
|
| 369 |
}
|
|
|
|
| 1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
| 2 |
+
//
|
| 3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
+
// To view a copy of this license, visit
|
| 5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
| 6 |
+
|
| 7 |
+
#include <torch/types.h>
|
| 8 |
+
|
| 9 |
+
#include <ATen/ATen.h>
|
| 10 |
+
#include <ATen/AccumulateType.h>
|
| 11 |
+
#include <ATen/cuda/CUDAContext.h>
|
| 12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
| 13 |
+
|
| 14 |
+
#include <cuda.h>
|
| 15 |
+
#include <cuda_runtime.h>
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
| 19 |
+
int c = a / b;
|
| 20 |
+
|
| 21 |
+
if (c * b > a) {
|
| 22 |
+
c--;
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
return c;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
struct UpFirDn2DKernelParams {
|
| 30 |
+
int up_x;
|
| 31 |
+
int up_y;
|
| 32 |
+
int down_x;
|
| 33 |
+
int down_y;
|
| 34 |
+
int pad_x0;
|
| 35 |
+
int pad_x1;
|
| 36 |
+
int pad_y0;
|
| 37 |
+
int pad_y1;
|
| 38 |
+
|
| 39 |
+
int major_dim;
|
| 40 |
+
int in_h;
|
| 41 |
+
int in_w;
|
| 42 |
+
int minor_dim;
|
| 43 |
+
int kernel_h;
|
| 44 |
+
int kernel_w;
|
| 45 |
+
int out_h;
|
| 46 |
+
int out_w;
|
| 47 |
+
int loop_major;
|
| 48 |
+
int loop_x;
|
| 49 |
+
};
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y, int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
| 53 |
+
__global__ void upfirdn2d_kernel(scalar_t* out, const scalar_t* input, const scalar_t* kernel, const UpFirDn2DKernelParams p) {
|
| 54 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
| 55 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
| 56 |
+
|
| 57 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
| 58 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
| 59 |
+
|
| 60 |
+
int minor_idx = blockIdx.x;
|
| 61 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
| 62 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
| 63 |
+
tile_out_y *= tile_out_h;
|
| 64 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
| 65 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
| 66 |
+
|
| 67 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | major_idx_base >= p.major_dim) {
|
| 68 |
+
return;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; tap_idx += blockDim.x) {
|
| 72 |
+
int ky = tap_idx / kernel_w;
|
| 73 |
+
int kx = tap_idx - ky * kernel_w;
|
| 74 |
+
scalar_t v = 0.0;
|
| 75 |
+
|
| 76 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
| 77 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
sk[ky][kx] = v;
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
for (int loop_major = 0, major_idx = major_idx_base; loop_major < p.loop_major & major_idx < p.major_dim; loop_major++, major_idx++) {
|
| 84 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base; loop_x < p.loop_x & tile_out_x < p.out_w; loop_x++, tile_out_x += tile_out_w) {
|
| 85 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
| 86 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
| 87 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
| 88 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
| 89 |
+
|
| 90 |
+
__syncthreads();
|
| 91 |
+
|
| 92 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; in_idx += blockDim.x) {
|
| 93 |
+
int rel_in_y = in_idx / tile_in_w;
|
| 94 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
| 95 |
+
int in_x = rel_in_x + tile_in_x;
|
| 96 |
+
int in_y = rel_in_y + tile_in_y;
|
| 97 |
+
|
| 98 |
+
scalar_t v = 0.0;
|
| 99 |
+
|
| 100 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
| 101 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + minor_idx];
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
sx[rel_in_y][rel_in_x] = v;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
__syncthreads();
|
| 108 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; out_idx += blockDim.x) {
|
| 109 |
+
int rel_out_y = out_idx / tile_out_w;
|
| 110 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
| 111 |
+
int out_x = rel_out_x + tile_out_x;
|
| 112 |
+
int out_y = rel_out_y + tile_out_y;
|
| 113 |
+
|
| 114 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
| 115 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
| 116 |
+
int in_x = floor_div(mid_x, up_x);
|
| 117 |
+
int in_y = floor_div(mid_y, up_y);
|
| 118 |
+
int rel_in_x = in_x - tile_in_x;
|
| 119 |
+
int rel_in_y = in_y - tile_in_y;
|
| 120 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
| 121 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
| 122 |
+
|
| 123 |
+
scalar_t v = 0.0;
|
| 124 |
+
|
| 125 |
+
#pragma unroll
|
| 126 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
| 127 |
+
#pragma unroll
|
| 128 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
| 129 |
+
v += sx[rel_in_y + y][rel_in_x + x] * sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
| 130 |
+
|
| 131 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
| 132 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + minor_idx] = v;
|
| 133 |
+
}
|
| 134 |
+
}
|
| 135 |
+
}
|
| 136 |
+
}
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
| 141 |
+
int up_x, int up_y, int down_x, int down_y,
|
| 142 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
| 143 |
+
int curDevice = -1;
|
| 144 |
+
cudaGetDevice(&curDevice);
|
| 145 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
| 146 |
+
|
| 147 |
+
UpFirDn2DKernelParams p;
|
| 148 |
+
|
| 149 |
+
auto x = input.contiguous();
|
| 150 |
+
auto k = kernel.contiguous();
|
| 151 |
+
|
| 152 |
+
p.major_dim = x.size(0);
|
| 153 |
+
p.in_h = x.size(1);
|
| 154 |
+
p.in_w = x.size(2);
|
| 155 |
+
p.minor_dim = x.size(3);
|
| 156 |
+
p.kernel_h = k.size(0);
|
| 157 |
+
p.kernel_w = k.size(1);
|
| 158 |
+
p.up_x = up_x;
|
| 159 |
+
p.up_y = up_y;
|
| 160 |
+
p.down_x = down_x;
|
| 161 |
+
p.down_y = down_y;
|
| 162 |
+
p.pad_x0 = pad_x0;
|
| 163 |
+
p.pad_x1 = pad_x1;
|
| 164 |
+
p.pad_y0 = pad_y0;
|
| 165 |
+
p.pad_y1 = pad_y1;
|
| 166 |
+
|
| 167 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / p.down_y;
|
| 168 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / p.down_x;
|
| 169 |
+
|
| 170 |
+
auto out = at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
| 171 |
+
|
| 172 |
+
int mode = -1;
|
| 173 |
+
|
| 174 |
+
int tile_out_h;
|
| 175 |
+
int tile_out_w;
|
| 176 |
+
|
| 177 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
| 178 |
+
mode = 1;
|
| 179 |
+
tile_out_h = 16;
|
| 180 |
+
tile_out_w = 64;
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 3 && p.kernel_w <= 3) {
|
| 184 |
+
mode = 2;
|
| 185 |
+
tile_out_h = 16;
|
| 186 |
+
tile_out_w = 64;
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
| 190 |
+
mode = 3;
|
| 191 |
+
tile_out_h = 16;
|
| 192 |
+
tile_out_w = 64;
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
| 196 |
+
mode = 4;
|
| 197 |
+
tile_out_h = 16;
|
| 198 |
+
tile_out_w = 64;
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
| 202 |
+
mode = 5;
|
| 203 |
+
tile_out_h = 8;
|
| 204 |
+
tile_out_w = 32;
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
| 208 |
+
mode = 6;
|
| 209 |
+
tile_out_h = 8;
|
| 210 |
+
tile_out_w = 32;
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
dim3 block_size;
|
| 214 |
+
dim3 grid_size;
|
| 215 |
+
|
| 216 |
+
if (tile_out_h > 0 && tile_out_w) {
|
| 217 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
| 218 |
+
p.loop_x = 1;
|
| 219 |
+
block_size = dim3(32 * 8, 1, 1);
|
| 220 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
| 221 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
| 222 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
| 226 |
+
switch (mode) {
|
| 227 |
+
case 1:
|
| 228 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
| 229 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
| 230 |
+
);
|
| 231 |
+
|
| 232 |
+
break;
|
| 233 |
+
|
| 234 |
+
case 2:
|
| 235 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
| 236 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
| 237 |
+
);
|
| 238 |
+
|
| 239 |
+
break;
|
| 240 |
+
|
| 241 |
+
case 3:
|
| 242 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
| 243 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
| 244 |
+
);
|
| 245 |
+
|
| 246 |
+
break;
|
| 247 |
+
|
| 248 |
+
case 4:
|
| 249 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
| 250 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
| 251 |
+
);
|
| 252 |
+
|
| 253 |
+
break;
|
| 254 |
+
|
| 255 |
+
case 5:
|
| 256 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
| 257 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
| 258 |
+
);
|
| 259 |
+
|
| 260 |
+
break;
|
| 261 |
+
|
| 262 |
+
case 6:
|
| 263 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
| 264 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
| 265 |
+
);
|
| 266 |
+
|
| 267 |
+
break;
|
| 268 |
+
}
|
| 269 |
+
});
|
| 270 |
+
|
| 271 |
+
return out;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
}
|