Spaces:
Sleeping
Sleeping
Update configs.py
Browse files- configs.py +1 -213
configs.py
CHANGED
|
@@ -14,174 +14,9 @@
|
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
import dataclasses
|
| 17 |
-
import os
|
| 18 |
-
import sys
|
| 19 |
from dataclasses import dataclass, field
|
| 20 |
from typing import Any, Dict, List, NewType, Optional, Tuple
|
| 21 |
|
| 22 |
-
import transformers
|
| 23 |
-
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, HfArgumentParser
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
| 27 |
-
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
DataClassType = NewType("DataClassType", Any)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
class H4ArgumentParser(HfArgumentParser):
|
| 34 |
-
def parse_yaml_and_args(self, yaml_arg: str, other_args: Optional[List[str]] = None) -> List[dataclass]:
|
| 35 |
-
"""
|
| 36 |
-
Parse a YAML file and overwrite the default/loaded values with the values provided to the command line.
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
yaml_arg (`str`):
|
| 40 |
-
The path to the config file used
|
| 41 |
-
other_args (`List[str]`, *optional`):
|
| 42 |
-
A list of strings to parse as command line arguments, e.g. ['--arg=val', '--arg2=val2'].
|
| 43 |
-
|
| 44 |
-
Returns:
|
| 45 |
-
[`List[dataclass]`]: a list of dataclasses with the values from the YAML file and the command line
|
| 46 |
-
"""
|
| 47 |
-
arg_list = self.parse_yaml_file(os.path.abspath(yaml_arg))
|
| 48 |
-
|
| 49 |
-
outputs = []
|
| 50 |
-
# strip other args list into dict of key-value pairs
|
| 51 |
-
other_args = {arg.split("=")[0].strip("-"): arg.split("=")[1] for arg in other_args}
|
| 52 |
-
used_args = {}
|
| 53 |
-
|
| 54 |
-
# overwrite the default/loaded value with the value provided to the command line
|
| 55 |
-
# adapted from https://github.com/huggingface/transformers/blob/d0b5002378daabf62769159add3e7d66d3f83c3b/src/transformers/hf_argparser.py#L327
|
| 56 |
-
for data_yaml, data_class in zip(arg_list, self.dataclass_types):
|
| 57 |
-
keys = {f.name for f in dataclasses.fields(data_yaml) if f.init}
|
| 58 |
-
inputs = {k: v for k, v in vars(data_yaml).items() if k in keys}
|
| 59 |
-
for arg, val in other_args.items():
|
| 60 |
-
# add only if in keys
|
| 61 |
-
if arg in keys:
|
| 62 |
-
base_type = data_yaml.__dataclass_fields__[arg].type
|
| 63 |
-
inputs[arg] = val
|
| 64 |
-
|
| 65 |
-
# cast type for ints, floats (default to strings)
|
| 66 |
-
if base_type in [int, float]:
|
| 67 |
-
inputs[arg] = base_type(val)
|
| 68 |
-
|
| 69 |
-
if base_type == List[str]:
|
| 70 |
-
inputs[arg] = [str(v) for v in val.split(",")]
|
| 71 |
-
|
| 72 |
-
# bool of a non-empty string is True, so we manually check for bools
|
| 73 |
-
if base_type == bool:
|
| 74 |
-
if val in ["true", "True"]:
|
| 75 |
-
inputs[arg] = True
|
| 76 |
-
else:
|
| 77 |
-
inputs[arg] = False
|
| 78 |
-
|
| 79 |
-
# add to used-args so we can check if double add
|
| 80 |
-
if arg not in used_args:
|
| 81 |
-
used_args[arg] = val
|
| 82 |
-
else:
|
| 83 |
-
raise ValueError(f"Duplicate argument provided: {arg}, may cause unexpected behavior")
|
| 84 |
-
|
| 85 |
-
obj = data_class(**inputs)
|
| 86 |
-
outputs.append(obj)
|
| 87 |
-
|
| 88 |
-
return outputs
|
| 89 |
-
|
| 90 |
-
def parse(self) -> DataClassType | Tuple[DataClassType]:
|
| 91 |
-
if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
|
| 92 |
-
# If we pass only one argument to the script and it's the path to a YAML file,
|
| 93 |
-
# let's parse it to get our arguments.
|
| 94 |
-
output = self.parse_yaml_file(os.path.abspath(sys.argv[1]))
|
| 95 |
-
# parse command line args and yaml file
|
| 96 |
-
elif len(sys.argv) > 2 and sys.argv[1].endswith(".yaml"):
|
| 97 |
-
output = self.parse_yaml_and_args(os.path.abspath(sys.argv[1]), sys.argv[2:])
|
| 98 |
-
# parse command line args only
|
| 99 |
-
else:
|
| 100 |
-
output = self.parse_args_into_dataclasses()
|
| 101 |
-
|
| 102 |
-
if len(output) == 1:
|
| 103 |
-
output = output[0]
|
| 104 |
-
return output
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
@dataclass
|
| 108 |
-
class ModelArguments:
|
| 109 |
-
"""
|
| 110 |
-
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
|
| 111 |
-
"""
|
| 112 |
-
|
| 113 |
-
base_model_revision: Optional[str] = field(
|
| 114 |
-
default=None,
|
| 115 |
-
metadata={"help": ("The base model checkpoint for weights initialization with PEFT adatpers.")},
|
| 116 |
-
)
|
| 117 |
-
model_name_or_path: Optional[str] = field(
|
| 118 |
-
default=None,
|
| 119 |
-
metadata={
|
| 120 |
-
"help": (
|
| 121 |
-
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
|
| 122 |
-
)
|
| 123 |
-
},
|
| 124 |
-
)
|
| 125 |
-
model_revision: str = field(
|
| 126 |
-
default="main",
|
| 127 |
-
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
| 128 |
-
)
|
| 129 |
-
model_code_revision: str = field(default=None, metadata={"help": "The branch of the IFT model"})
|
| 130 |
-
torch_dtype: Optional[str] = field(
|
| 131 |
-
default=None,
|
| 132 |
-
metadata={
|
| 133 |
-
"help": (
|
| 134 |
-
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
|
| 135 |
-
"dtype will be automatically derived from the model's weights."
|
| 136 |
-
),
|
| 137 |
-
"choices": ["auto", "bfloat16", "float16", "float32"],
|
| 138 |
-
},
|
| 139 |
-
)
|
| 140 |
-
trust_remote_code: bool = field(default=False, metadata={"help": "Trust remote code when loading a model."})
|
| 141 |
-
use_flash_attention_2: bool = field(
|
| 142 |
-
default=False,
|
| 143 |
-
metadata={
|
| 144 |
-
"help": (
|
| 145 |
-
"Whether to use flash attention 2. You must install this manually by running `pip install flash-attn --no-build-isolation`"
|
| 146 |
-
)
|
| 147 |
-
},
|
| 148 |
-
)
|
| 149 |
-
use_peft: bool = field(
|
| 150 |
-
default=False,
|
| 151 |
-
metadata={"help": ("Whether to use PEFT or not for training.")},
|
| 152 |
-
)
|
| 153 |
-
lora_r: Optional[int] = field(
|
| 154 |
-
default=16,
|
| 155 |
-
metadata={"help": ("LoRA R value.")},
|
| 156 |
-
)
|
| 157 |
-
lora_alpha: Optional[int] = field(
|
| 158 |
-
default=32,
|
| 159 |
-
metadata={"help": ("LoRA alpha.")},
|
| 160 |
-
)
|
| 161 |
-
lora_dropout: Optional[float] = field(
|
| 162 |
-
default=0.05,
|
| 163 |
-
metadata={"help": ("LoRA dropout.")},
|
| 164 |
-
)
|
| 165 |
-
lora_target_modules: Optional[List[str]] = field(
|
| 166 |
-
default=None,
|
| 167 |
-
metadata={"help": ("LoRA target modules.")},
|
| 168 |
-
)
|
| 169 |
-
lora_modules_to_save: Optional[List[str]] = field(
|
| 170 |
-
default=None,
|
| 171 |
-
metadata={"help": ("Model layers to unfreeze & train")},
|
| 172 |
-
)
|
| 173 |
-
load_in_8bit: bool = field(default=False, metadata={"help": "use 8 bit precision"})
|
| 174 |
-
load_in_4bit: bool = field(default=False, metadata={"help": "use 4 bit precision"})
|
| 175 |
-
|
| 176 |
-
bnb_4bit_quant_type: Optional[str] = field(
|
| 177 |
-
default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"}
|
| 178 |
-
)
|
| 179 |
-
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "use nested quantization"})
|
| 180 |
-
|
| 181 |
-
def __post_init__(self):
|
| 182 |
-
if self.load_in_8bit and self.load_in_4bit:
|
| 183 |
-
raise ValueError("You can't use 8 bit and 4 bit precision at the same time")
|
| 184 |
-
|
| 185 |
|
| 186 |
@dataclass
|
| 187 |
class DataArguments:
|
|
@@ -222,51 +57,4 @@ class DataArguments:
|
|
| 222 |
)
|
| 223 |
truncation_side: Optional[str] = field(
|
| 224 |
default=None, metadata={"help": "Truncation side to use for the tokenizer."}
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
@dataclass
|
| 229 |
-
class SFTConfig(transformers.TrainingArguments):
|
| 230 |
-
"""
|
| 231 |
-
Arguments related to the training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments
|
| 232 |
-
"""
|
| 233 |
-
|
| 234 |
-
max_seq_length: Optional[int] = field(
|
| 235 |
-
default=None,
|
| 236 |
-
metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")},
|
| 237 |
-
)
|
| 238 |
-
logging_first_step: bool = field(
|
| 239 |
-
default=True,
|
| 240 |
-
metadata={"help": ("Whether to log and evaluate the first global_step or not.")},
|
| 241 |
-
)
|
| 242 |
-
optim: Optional[str] = field(default="adamw_torch")
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
@dataclass
|
| 246 |
-
class DPOConfig(transformers.TrainingArguments):
|
| 247 |
-
"""
|
| 248 |
-
Arguments related to the DPO training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments
|
| 249 |
-
"""
|
| 250 |
-
|
| 251 |
-
beta: Optional[float] = field(
|
| 252 |
-
default=0.1,
|
| 253 |
-
metadata={"help": "The beta factor in DPO loss. Higher beta means less divergence from the initial policy."},
|
| 254 |
-
)
|
| 255 |
-
hub_model_revision: Optional[str] = field(
|
| 256 |
-
default="main",
|
| 257 |
-
metadata={"help": ("The Hub model branch to push the model to.")},
|
| 258 |
-
)
|
| 259 |
-
logging_first_step: bool = field(
|
| 260 |
-
default=True,
|
| 261 |
-
metadata={"help": ("Whether to log and evaluate the first global_step or not.")},
|
| 262 |
-
)
|
| 263 |
-
max_prompt_length: Optional[int] = field(
|
| 264 |
-
default=None,
|
| 265 |
-
metadata={"help": ("For DPO, the maximum length of the prompt to use for conditioning the model.")},
|
| 266 |
-
)
|
| 267 |
-
max_length: Optional[int] = field(
|
| 268 |
-
default=None,
|
| 269 |
-
metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")},
|
| 270 |
-
)
|
| 271 |
-
optim: Optional[str] = field(default="rmsprop")
|
| 272 |
-
remove_unused_columns: bool = field(default=False)
|
|
|
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
import dataclasses
|
|
|
|
|
|
|
| 17 |
from dataclasses import dataclass, field
|
| 18 |
from typing import Any, Dict, List, NewType, Optional, Tuple
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
@dataclass
|
| 22 |
class DataArguments:
|
|
|
|
| 57 |
)
|
| 58 |
truncation_side: Optional[str] = field(
|
| 59 |
default=None, metadata={"help": "Truncation side to use for the tokenizer."}
|
| 60 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|