Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,17 +7,16 @@ from alignment import (
|
|
| 7 |
get_tokenizer,
|
| 8 |
)
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
###############
|
| 15 |
# Load datasets
|
| 16 |
###############
|
| 17 |
raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits)
|
| 18 |
-
|
| 19 |
-
f"Training on the following datasets and their proportions: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
|
| 20 |
-
)
|
| 21 |
|
| 22 |
################
|
| 23 |
# Load tokenizer
|
|
@@ -31,9 +30,15 @@ def template(base_model, trained_adapter, token):
|
|
| 31 |
train_dataset = raw_datasets["train"]
|
| 32 |
eval_dataset = raw_datasets["test"]
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
with gr.Blocks() as demo:
|
| 35 |
-
gr.Markdown("##
|
| 36 |
-
gr.Markdown("
|
| 37 |
token = gr.Textbox(
|
| 38 |
label="Hugging Face Write Token",
|
| 39 |
value="",
|
|
@@ -42,23 +47,44 @@ with gr.Blocks() as demo:
|
|
| 42 |
interactive=True,
|
| 43 |
type="password",
|
| 44 |
)
|
| 45 |
-
|
| 46 |
-
label="
|
| 47 |
-
value="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
lines=1,
|
| 49 |
max_lines=1,
|
| 50 |
interactive=True,
|
| 51 |
)
|
| 52 |
-
|
| 53 |
-
label="
|
| 54 |
value="",
|
| 55 |
lines=1,
|
| 56 |
max_lines=1,
|
| 57 |
interactive=True,
|
| 58 |
)
|
| 59 |
-
submit = gr.Button(value="
|
| 60 |
op = gr.Markdown(interactive=False)
|
| 61 |
-
submit.click(
|
| 62 |
|
| 63 |
|
| 64 |
if __name__ == "__main__":
|
|
|
|
| 7 |
get_tokenizer,
|
| 8 |
)
|
| 9 |
|
| 10 |
+
|
| 11 |
+
def reformat(dataset_name, train_split, test_split, model_name, upload_name, token):
|
| 12 |
+
data_args = DataArguments(chat_template=None, dataset_mixer={dataset_name: 1.0}, dataset_splits=[train_split, test_split], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None)
|
| 13 |
+
model_args = ModelArguments(base_model_revision=None, model_name_or_path=model_name, model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False)
|
| 14 |
|
| 15 |
###############
|
| 16 |
# Load datasets
|
| 17 |
###############
|
| 18 |
raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits)
|
| 19 |
+
output = f"Dataset successfully formatted and pushed! Dataset and their proportions: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
|
|
|
|
|
|
|
| 20 |
|
| 21 |
################
|
| 22 |
# Load tokenizer
|
|
|
|
| 30 |
train_dataset = raw_datasets["train"]
|
| 31 |
eval_dataset = raw_datasets["test"]
|
| 32 |
|
| 33 |
+
raw_dataset.push_to_hub(upload_name)
|
| 34 |
+
return gr.Markdown.update(
|
| 35 |
+
value=output
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
with gr.Blocks() as demo:
|
| 40 |
+
gr.Markdown("## Dataset Chat Template")
|
| 41 |
+
gr.Markdown("Format Datasets like HuggingFaceH4/no_robots to be AutoTrain compatible.")
|
| 42 |
token = gr.Textbox(
|
| 43 |
label="Hugging Face Write Token",
|
| 44 |
value="",
|
|
|
|
| 47 |
interactive=True,
|
| 48 |
type="password",
|
| 49 |
)
|
| 50 |
+
dataset_name = gr.Textbox(
|
| 51 |
+
label="Dataset Name (e.g. HuggingFaceH4/no_robots)",
|
| 52 |
+
value="HuggingFaceH4/no_robots",
|
| 53 |
+
lines=1,
|
| 54 |
+
max_lines=1,
|
| 55 |
+
interactive=True,
|
| 56 |
+
)
|
| 57 |
+
train_split = gr.Textbox(
|
| 58 |
+
label="Train Split Name (e.g. train_sft)",
|
| 59 |
+
value="train_sft",
|
| 60 |
+
lines=1,
|
| 61 |
+
max_lines=1,
|
| 62 |
+
interactive=True,
|
| 63 |
+
)
|
| 64 |
+
test_split = gr.Textbox(
|
| 65 |
+
label="Test Split Name (e.g. test_sft)",
|
| 66 |
+
value="test_sft",
|
| 67 |
+
lines=1,
|
| 68 |
+
max_lines=1,
|
| 69 |
+
interactive=True,
|
| 70 |
+
)
|
| 71 |
+
model_name = gr.Textbox(
|
| 72 |
+
label="Model Name (e.g. mistralai/Mistral-7B-v0.1)",
|
| 73 |
+
value="mistralai/Mistral-7B-v0.1",
|
| 74 |
lines=1,
|
| 75 |
max_lines=1,
|
| 76 |
interactive=True,
|
| 77 |
)
|
| 78 |
+
upload_name = gr.Textbox(
|
| 79 |
+
label="Your Dataset Name (e.g. rishiraj/no_robots)",
|
| 80 |
value="",
|
| 81 |
lines=1,
|
| 82 |
max_lines=1,
|
| 83 |
interactive=True,
|
| 84 |
)
|
| 85 |
+
submit = gr.Button(value="Apply Template & Push")
|
| 86 |
op = gr.Markdown(interactive=False)
|
| 87 |
+
submit.click(reformat, inputs=[dataset_name, train_split, test_split, model_name, upload_name, token], outputs=[op])
|
| 88 |
|
| 89 |
|
| 90 |
if __name__ == "__main__":
|