Spaces:
Sleeping
Sleeping
Upload data.py
Browse files
data.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
import re
|
| 18 |
+
from typing import List, Literal, Optional
|
| 19 |
+
|
| 20 |
+
from datasets import DatasetDict, concatenate_datasets, load_dataset
|
| 21 |
+
|
| 22 |
+
from .configs import DataArguments
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def apply_chat_template(
|
| 29 |
+
example, tokenizer, task: Literal["sft", "generation", "rm", "dpo"] = "sft", assistant_prefix="<|assistant|>\n"
|
| 30 |
+
):
|
| 31 |
+
def _strip_prefix(s, pattern):
|
| 32 |
+
# Use re.escape to escape any special characters in the pattern
|
| 33 |
+
return re.sub(f"^{re.escape(pattern)}", "", s)
|
| 34 |
+
|
| 35 |
+
if task in ["sft", "generation"]:
|
| 36 |
+
messages = example["messages"]
|
| 37 |
+
# We add an empty system message if there is none
|
| 38 |
+
if messages[0]["role"] != "system":
|
| 39 |
+
messages.insert(0, {"role": "system", "content": ""})
|
| 40 |
+
example["text"] = tokenizer.apply_chat_template(
|
| 41 |
+
messages, tokenize=False, add_generation_prompt=True if task == "generation" else False
|
| 42 |
+
)
|
| 43 |
+
elif task == "rm":
|
| 44 |
+
if all(k in example.keys() for k in ("chosen", "rejected")):
|
| 45 |
+
chosen_messages = example["chosen"]
|
| 46 |
+
rejected_messages = example["rejected"]
|
| 47 |
+
# We add an empty system message if there is none
|
| 48 |
+
if chosen_messages[0]["role"] != "system":
|
| 49 |
+
chosen_messages.insert(0, {"role": "system", "content": ""})
|
| 50 |
+
if rejected_messages[0]["role"] != "system":
|
| 51 |
+
rejected_messages.insert(0, {"role": "system", "content": ""})
|
| 52 |
+
example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
|
| 53 |
+
example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError(
|
| 56 |
+
f"Could not format example as dialogue for `rm` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
|
| 57 |
+
)
|
| 58 |
+
elif task == "dpo":
|
| 59 |
+
if all(k in example.keys() for k in ("chosen", "rejected")):
|
| 60 |
+
# Compared to reward modeling, we filter out the prompt, so the text is everything after the last assistant token
|
| 61 |
+
prompt_messages = [[msg for msg in example["chosen"] if msg["role"] == "user"][0]]
|
| 62 |
+
# Insert system message
|
| 63 |
+
if example["chosen"][0]["role"] != "system":
|
| 64 |
+
prompt_messages.insert(0, {"role": "system", "content": ""})
|
| 65 |
+
else:
|
| 66 |
+
prompt_messages.insert(0, example["chosen"][0])
|
| 67 |
+
# TODO: handle case where chosen/rejected also have system messages
|
| 68 |
+
chosen_messages = example["chosen"][1:]
|
| 69 |
+
rejected_messages = example["rejected"][1:]
|
| 70 |
+
example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
|
| 71 |
+
example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
|
| 72 |
+
example["text_prompt"] = tokenizer.apply_chat_template(
|
| 73 |
+
prompt_messages, tokenize=False, add_generation_prompt=True
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
example["text_chosen"] = _strip_prefix(example["text_chosen"], assistant_prefix)
|
| 77 |
+
example["text_rejected"] = _strip_prefix(example["text_rejected"], assistant_prefix)
|
| 78 |
+
else:
|
| 79 |
+
raise ValueError(
|
| 80 |
+
f"Could not format example as dialogue for `dpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
|
| 81 |
+
)
|
| 82 |
+
return example
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def get_datasets(
|
| 86 |
+
data_config: DataArguments | dict,
|
| 87 |
+
splits: List[str] = ["train", "test"],
|
| 88 |
+
shuffle: bool = True,
|
| 89 |
+
) -> DatasetDict:
|
| 90 |
+
"""
|
| 91 |
+
Loads one or more datasets with varying training set proportions.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
data_config (`DataArguments` or `dict`):
|
| 95 |
+
Dataset configuration and split proportions.
|
| 96 |
+
splits (`List[str]`, *optional*, defaults to `['train', 'test']`):
|
| 97 |
+
Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
|
| 98 |
+
shuffle (`bool`, *optional*, defaults to `True`):
|
| 99 |
+
Whether to shuffle the training data.
|
| 100 |
+
|
| 101 |
+
Returns
|
| 102 |
+
[`DatasetDict`]: The dataset dictionary containing the loaded datasets.
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
if type(data_config) is DataArguments:
|
| 106 |
+
# Structure of the config to read the datasets and their mix
|
| 107 |
+
# datasets_mixer:
|
| 108 |
+
# - 'dataset1': 0.5
|
| 109 |
+
# - 'dataset2': 0.3
|
| 110 |
+
# - 'dataset3': 0.2
|
| 111 |
+
dataset_mixer = data_config.dataset_mixer
|
| 112 |
+
elif type(data_config) is dict:
|
| 113 |
+
# Structure of the input is:
|
| 114 |
+
# dataset_mixer = {
|
| 115 |
+
# "dataset1": 0.5,
|
| 116 |
+
# "dataset1": 0.3,
|
| 117 |
+
# "dataset1": 0.2,
|
| 118 |
+
# }
|
| 119 |
+
dataset_mixer = data_config
|
| 120 |
+
else:
|
| 121 |
+
raise ValueError(f"Data config {data_config} not recognized.")
|
| 122 |
+
|
| 123 |
+
raw_datasets = mix_datasets(dataset_mixer, splits=splits, shuffle=shuffle)
|
| 124 |
+
return raw_datasets
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def mix_datasets(dataset_mixer: dict, splits: Optional[List[str]] = None, shuffle=True) -> DatasetDict:
|
| 128 |
+
"""
|
| 129 |
+
Loads and mixes datasets according to proportions specified in `dataset_mixer`.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
dataset_mixer (`dict`):
|
| 133 |
+
Dictionary containing the dataset names and their training proportions. By default, all test proportions are 1.
|
| 134 |
+
splits (Optional[List[str]], *optional*, defaults to `None`):
|
| 135 |
+
Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
|
| 136 |
+
shuffle (`bool`, *optional*, defaults to `True`):
|
| 137 |
+
Whether to shuffle the training data.
|
| 138 |
+
"""
|
| 139 |
+
raw_datasets = DatasetDict()
|
| 140 |
+
raw_train_datasets = []
|
| 141 |
+
raw_val_datasets = []
|
| 142 |
+
fracs = []
|
| 143 |
+
for ds, frac in dataset_mixer.items():
|
| 144 |
+
fracs.append(frac)
|
| 145 |
+
for split in splits:
|
| 146 |
+
if "train" in split:
|
| 147 |
+
raw_train_datasets.append(
|
| 148 |
+
load_dataset(
|
| 149 |
+
ds,
|
| 150 |
+
split=split,
|
| 151 |
+
)
|
| 152 |
+
)
|
| 153 |
+
elif "test" in split:
|
| 154 |
+
raw_val_datasets.append(
|
| 155 |
+
load_dataset(
|
| 156 |
+
ds,
|
| 157 |
+
split=split,
|
| 158 |
+
)
|
| 159 |
+
)
|
| 160 |
+
else:
|
| 161 |
+
raise ValueError(f"Split type {split} not recognized as one of test or train.")
|
| 162 |
+
|
| 163 |
+
if any(frac < 0 for frac in fracs):
|
| 164 |
+
raise ValueError("Dataset fractions cannot be negative.")
|
| 165 |
+
|
| 166 |
+
if len(raw_train_datasets) > 0:
|
| 167 |
+
train_subsets = []
|
| 168 |
+
for dataset, frac in zip(raw_train_datasets, fracs):
|
| 169 |
+
train_subset = dataset.select(range(int(frac * len(dataset))))
|
| 170 |
+
train_subsets.append(train_subset)
|
| 171 |
+
if shuffle:
|
| 172 |
+
raw_datasets["train"] = concatenate_datasets(train_subsets).shuffle(seed=42)
|
| 173 |
+
else:
|
| 174 |
+
raw_datasets["train"] = concatenate_datasets(train_subsets)
|
| 175 |
+
# No subsampling for test datasets to enable fair comparison across models
|
| 176 |
+
if len(raw_val_datasets) > 0:
|
| 177 |
+
if shuffle:
|
| 178 |
+
raw_datasets["test"] = concatenate_datasets(raw_val_datasets).shuffle(seed=42)
|
| 179 |
+
else:
|
| 180 |
+
raw_datasets["test"] = concatenate_datasets(raw_val_datasets)
|
| 181 |
+
|
| 182 |
+
if len(raw_datasets) == 0:
|
| 183 |
+
raise ValueError(
|
| 184 |
+
f"Dataset {dataset_mixer} not recognized with split {split}. Check the dataset has been correctly formatted."
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return raw_datasets
|