Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
|
| 3 |
data_args = DataArguments(chat_template=None, dataset_mixer={'HuggingFaceH4/no_robots': 1.0}, dataset_splits=['train_sft', 'test_sft'], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None)
|
| 4 |
model_args = ModelArguments(base_model_revision=None, model_name_or_path='mistralai/Mistral-7B-v0.1', model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False)
|
|
@@ -21,4 +22,37 @@ tokenizer = get_tokenizer(model_args, data_args)
|
|
| 21 |
#####################
|
| 22 |
raw_datasets = raw_datasets.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"})
|
| 23 |
train_dataset = raw_datasets["train"]
|
| 24 |
-
eval_dataset = raw_datasets["test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from . import DataArguments, ModelArguments, apply_chat_template, get_datasets, get_tokenizer
|
| 3 |
|
| 4 |
data_args = DataArguments(chat_template=None, dataset_mixer={'HuggingFaceH4/no_robots': 1.0}, dataset_splits=['train_sft', 'test_sft'], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None)
|
| 5 |
model_args = ModelArguments(base_model_revision=None, model_name_or_path='mistralai/Mistral-7B-v0.1', model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False)
|
|
|
|
| 22 |
#####################
|
| 23 |
raw_datasets = raw_datasets.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"})
|
| 24 |
train_dataset = raw_datasets["train"]
|
| 25 |
+
eval_dataset = raw_datasets["test"]
|
| 26 |
+
|
| 27 |
+
with gr.Blocks() as demo:
|
| 28 |
+
gr.Markdown("## AutoTrain Merge Adapter")
|
| 29 |
+
gr.Markdown("Please duplicate this space and attach a GPU in order to use it.")
|
| 30 |
+
token = gr.Textbox(
|
| 31 |
+
label="Hugging Face Write Token",
|
| 32 |
+
value="",
|
| 33 |
+
lines=1,
|
| 34 |
+
max_lines=1,
|
| 35 |
+
interactive=True,
|
| 36 |
+
type="password",
|
| 37 |
+
)
|
| 38 |
+
base_model = gr.Textbox(
|
| 39 |
+
label="Base Model (e.g. meta-llama/Llama-2-7b-chat-hf)",
|
| 40 |
+
value="",
|
| 41 |
+
lines=1,
|
| 42 |
+
max_lines=1,
|
| 43 |
+
interactive=True,
|
| 44 |
+
)
|
| 45 |
+
trained_adapter = gr.Textbox(
|
| 46 |
+
label="Trained Adapter Model (e.g. username/autotrain-my-llama)",
|
| 47 |
+
value="",
|
| 48 |
+
lines=1,
|
| 49 |
+
max_lines=1,
|
| 50 |
+
interactive=True,
|
| 51 |
+
)
|
| 52 |
+
submit = gr.Button(value="Merge & Push")
|
| 53 |
+
op = gr.Markdown(interactive=False)
|
| 54 |
+
submit.click(merge, inputs=[base_model, trained_adapter, token], outputs=[op])
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
demo.launch()
|