rjzevallos commited on
Commit
b802937
·
verified ·
1 Parent(s): 6fb37e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -514
app.py CHANGED
@@ -18,30 +18,24 @@ def match_target_amplitude(sound, target_dBFS):
18
  change_in_dBFS = target_dBFS - sound.dBFS
19
  return sound.apply_gain(change_in_dBFS)
20
 
21
- # from gradio_space_ci import enable_space_ci
22
-
23
- # enable_space_ci()
24
-
25
 
26
 
27
  toxicity = Detoxify('original')
28
  with open('bsc.txt') as f:
29
  sents = f.read().strip().splitlines()
 
 
30
  ####################################
31
  # Constants
32
  ####################################
33
  AVAILABLE_MODELS = {
34
  'XTTSv2': 'xtts',
35
- # 'WhisperSpeech': 'whisperspeech',
36
  'ElevenLabs': 'eleven',
37
- # 'OpenVoice': 'openvoice',
38
  'OpenVoice V2': 'openvoicev2',
39
  'Play.HT 2.0': 'playht',
40
- # 'MetaVoice': 'metavoice',
41
  'MeloTTS': 'melo',
42
  'StyleTTS 2': 'styletts2',
43
  'GPT-SoVITS': 'sovits',
44
- # 'Vokan TTS': 'vokan',
45
  'VoiceCraft 2.0': 'voicecraft',
46
  'Parler TTS': 'parler'
47
  }
@@ -55,14 +49,7 @@ DB_NAME = "database.db"
55
  # If /data available => means local storage is enabled => let's use it!
56
  DB_PATH = f"/data/{DB_NAME}" if os.path.isdir("/data") else DB_NAME
57
  print(f"Using {DB_PATH}")
58
- # AUDIO_DATASET_ID = "ttseval/tts-arena-new"
59
- CITATION_TEXT = """@misc{tts-arena,
60
- title = {Text to Speech Arena},
61
- author = {mrfakename and Srivastav, Vaibhav and Fourrier, Clémentine and Pouget, Lucain and Lacombe, Yoach and main and Gandhi, Sanchit},
62
- year = 2024,
63
- publisher = {Hugging Face},
64
- howpublished = "\\url{https://huggingface.co/spaces/TTS-AGI/TTS-Arena}"
65
- }"""
66
 
67
  ####################################
68
  # Functions
@@ -160,505 +147,7 @@ theme = gr.themes.Base(
160
  font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
161
  )
162
 
163
- model_names = {
164
- 'styletts2': 'StyleTTS 2',
165
- 'tacotron': 'Tacotron',
166
- 'tacotronph': 'Tacotron Phoneme',
167
- 'tacotrondca': 'Tacotron DCA',
168
- 'speedyspeech': 'Speedy Speech',
169
- 'overflow': 'Overflow TTS',
170
- 'vits': 'VITS',
171
- 'vitsneon': 'VITS Neon',
172
- 'neuralhmm': 'Neural HMM',
173
- 'glow': 'Glow TTS',
174
- 'fastpitch': 'FastPitch',
175
- 'jenny': 'Jenny',
176
- 'tortoise': 'Tortoise TTS',
177
- 'xtts2': 'Coqui XTTSv2',
178
- 'xtts': 'Coqui XTTS',
179
- 'openvoice': 'MyShell OpenVoice',
180
- 'elevenlabs': 'ElevenLabs',
181
- 'openai': 'OpenAI',
182
- 'hierspeech': 'HierSpeech++',
183
- 'pheme': 'PolyAI Pheme',
184
- 'speecht5': 'SpeechT5',
185
- 'metavoice': 'MetaVoice-1B',
186
- }
187
- model_licenses = {
188
- 'styletts2': 'MIT',
189
- 'tacotron': 'BSD-3',
190
- 'tacotronph': 'BSD-3',
191
- 'tacotrondca': 'BSD-3',
192
- 'speedyspeech': 'BSD-3',
193
- 'overflow': 'MIT',
194
- 'vits': 'MIT',
195
- 'openvoice': 'MIT',
196
- 'vitsneon': 'BSD-3',
197
- 'neuralhmm': 'MIT',
198
- 'glow': 'MIT',
199
- 'fastpitch': 'Apache 2.0',
200
- 'jenny': 'Jenny License',
201
- 'tortoise': 'Apache 2.0',
202
- 'xtts2': 'CPML (NC)',
203
- 'xtts': 'CPML (NC)',
204
- 'elevenlabs': 'Proprietary',
205
- 'eleven': 'Proprietary',
206
- 'openai': 'Proprietary',
207
- 'hierspeech': 'MIT',
208
- 'pheme': 'CC-BY',
209
- 'speecht5': 'MIT',
210
- 'metavoice': 'Apache 2.0',
211
- 'elevenlabs': 'Proprietary',
212
- 'whisperspeech': 'MIT',
213
- }
214
- model_links = {
215
- 'styletts2': 'https://github.com/yl4579/StyleTTS2',
216
- 'tacotron': 'https://github.com/NVIDIA/tacotron2',
217
- 'speedyspeech': 'https://github.com/janvainer/speedyspeech',
218
- 'overflow': 'https://github.com/shivammehta25/OverFlow',
219
- 'vits': 'https://github.com/jaywalnut310/vits',
220
- 'openvoice': 'https://github.com/myshell-ai/OpenVoice',
221
- 'neuralhmm': 'https://github.com/ketranm/neuralHMM',
222
- 'glow': 'https://github.com/jaywalnut310/glow-tts',
223
- 'fastpitch': 'https://fastpitch.github.io/',
224
- 'tortoise': 'https://github.com/neonbjb/tortoise-tts',
225
- 'xtts2': 'https://huggingface.co/coqui/XTTS-v2',
226
- 'xtts': 'https://huggingface.co/coqui/XTTS-v1',
227
- 'elevenlabs': 'https://elevenlabs.io/',
228
- 'openai': 'https://help.openai.com/en/articles/8555505-tts-api',
229
- 'hierspeech': 'https://github.com/sh-lee-prml/HierSpeechpp',
230
- 'pheme': 'https://github.com/PolyAI-LDN/pheme',
231
- 'speecht5': 'https://github.com/microsoft/SpeechT5',
232
- 'metavoice': 'https://github.com/metavoiceio/metavoice-src',
233
- }
234
-
235
- def model_license(name):
236
- print(name)
237
- for k, v in AVAILABLE_MODELS.items():
238
- if k == name:
239
- if v in model_licenses:
240
- return model_licenses[v]
241
- print('---')
242
- return 'Unknown'
243
-
244
-
245
- def get_leaderboard(reveal_prelim = False):
246
- conn = get_db()
247
- cursor = conn.cursor()
248
- sql = 'SELECT name, upvote, downvote FROM model'
249
- # if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
250
- if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 500'
251
- cursor.execute(sql)
252
- data = cursor.fetchall()
253
- df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
254
- # df['license'] = df['name'].map(model_license)
255
- df['name'] = df['name'].replace(model_names)
256
- df['votes'] = df['upvote'] + df['downvote']
257
- # df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score
258
-
259
- ## ELO SCORE
260
- df['score'] = 1200
261
- for i in range(len(df)):
262
- for j in range(len(df)):
263
- if i != j:
264
- expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400))
265
- expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400))
266
- actual_a = df['upvote'][i] / df['votes'][i]
267
- actual_b = df['upvote'][j] / df['votes'][j]
268
- df.at[i, 'score'] += 32 * (actual_a - expected_a)
269
- df.at[j, 'score'] += 32 * (actual_b - expected_b)
270
- df['score'] = round(df['score'])
271
- ## ELO SCORE
272
- df = df.sort_values(by='score', ascending=False)
273
- df['order'] = ['#' + str(i + 1) for i in range(len(df))]
274
- # df = df[['name', 'score', 'upvote', 'votes']]
275
- # df = df[['order', 'name', 'score', 'license', 'votes']]
276
- df = df[['order', 'name', 'score', 'votes']]
277
- return df
278
-
279
-
280
- def mkuuid(uid):
281
- if not uid:
282
- uid = uuid.uuid4()
283
- return uid
284
-
285
- def upvote_model(model, uname):
286
- conn = get_db()
287
- cursor = conn.cursor()
288
- cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,))
289
- if cursor.rowcount == 0:
290
- cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,))
291
- cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, 1,))
292
- with scheduler.lock:
293
- conn.commit()
294
- cursor.close()
295
-
296
-
297
- def log_text(text):
298
- conn = get_db()
299
- cursor = conn.cursor()
300
- cursor.execute('INSERT INTO spokentext (spokentext) VALUES (?)', (text,))
301
- with scheduler.lock:
302
- conn.commit()
303
- cursor.close()
304
-
305
-
306
- def downvote_model(model, uname):
307
- conn = get_db()
308
- cursor = conn.cursor()
309
- cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,))
310
- if cursor.rowcount == 0:
311
- cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,))
312
- cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, -1,))
313
- with scheduler.lock:
314
- conn.commit()
315
- cursor.close()
316
-
317
- def a_is_better(model1, model2, userid):
318
- print("A is better", model1, model2)
319
- if not model1 in AVAILABLE_MODELS.keys() and not model1 in AVAILABLE_MODELS.values():
320
- raise gr.Error('Sorry, please try voting again.')
321
- userid = mkuuid(userid)
322
- if model1 and model2:
323
- conn = get_db()
324
- cursor = conn.cursor()
325
- cursor.execute('INSERT INTO votelog (username, chosen, rejected) VALUES (?, ?, ?)', (str(userid), model1, model2,))
326
- with scheduler.lock:
327
- conn.commit()
328
- cursor.close()
329
- upvote_model(model1, str(userid))
330
- downvote_model(model2, str(userid))
331
- return reload(model1, model2, userid, chose_a=True)
332
- def b_is_better(model1, model2, userid):
333
- print("B is better", model1, model2)
334
- if not model1 in AVAILABLE_MODELS.keys() and not model1 in AVAILABLE_MODELS.values():
335
- raise gr.Error('Sorry, please try voting again.')
336
- userid = mkuuid(userid)
337
- if model1 and model2:
338
- conn = get_db()
339
- cursor = conn.cursor()
340
- cursor.execute('INSERT INTO votelog (username, chosen, rejected) VALUES (?, ?, ?)', (str(userid), model2, model1,))
341
- with scheduler.lock:
342
- conn.commit()
343
- cursor.close()
344
- upvote_model(model2, str(userid))
345
- downvote_model(model1, str(userid))
346
- return reload(model1, model2, userid, chose_b=True)
347
- def both_bad(model1, model2, userid):
348
- userid = mkuuid(userid)
349
- if model1 and model2:
350
- downvote_model(model1, str(userid))
351
- downvote_model(model2, str(userid))
352
- return reload(model1, model2, userid)
353
- def both_good(model1, model2, userid):
354
- userid = mkuuid(userid)
355
- if model1 and model2:
356
- upvote_model(model1, str(userid))
357
- upvote_model(model2, str(userid))
358
- return reload(model1, model2, userid)
359
- def reload(chosenmodel1=None, chosenmodel2=None, userid=None, chose_a=False, chose_b=False):
360
- # Select random splits
361
- # row = random.choice(list(audio_dataset['train']))
362
- # options = list(random.choice(list(audio_dataset['train'])).keys())
363
- # split1, split2 = random.sample(options, 2)
364
- # choice1, choice2 = (row[split1], row[split2])
365
- # if chosenmodel1 in model_names:
366
- # chosenmodel1 = model_names[chosenmodel1]
367
- # if chosenmodel2 in model_names:
368
- # chosenmodel2 = model_names[chosenmodel2]
369
- # out = [
370
- # (choice1['sampling_rate'], choice1['array']),
371
- # (choice2['sampling_rate'], choice2['array']),
372
- # split1,
373
- # split2
374
- # ]
375
- # if userid: out.append(userid)
376
- # if chosenmodel1: out.append(f'This model was {chosenmodel1}')
377
- # if chosenmodel2: out.append(f'This model was {chosenmodel2}')
378
- # return out
379
- # return (f'This model was {chosenmodel1}', f'This model was {chosenmodel2}', gr.update(visible=False), gr.update(visible=False))
380
- # return (gr.update(variant='secondary', value=chosenmodel1, interactive=False), gr.update(variant='secondary', value=chosenmodel2, interactive=False))
381
- out = [
382
- gr.update(interactive=False, visible=False),
383
- gr.update(interactive=False, visible=False)
384
- ]
385
- if chose_a == True:
386
- out.append(gr.update(value=f'Your vote: {chosenmodel1}', interactive=False, visible=True))
387
- out.append(gr.update(value=f'{chosenmodel2}', interactive=False, visible=True))
388
- else:
389
- out.append(gr.update(value=f'{chosenmodel1}', interactive=False, visible=True))
390
- out.append(gr.update(value=f'Your vote: {chosenmodel2}', interactive=False, visible=True))
391
- out.append(gr.update(visible=True))
392
- return out
393
-
394
- with gr.Blocks() as leaderboard:
395
- gr.Markdown(LDESC)
396
- # df = gr.Dataframe(interactive=False, value=get_leaderboard())
397
- df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[30, 200, 50, 50])
398
- with gr.Row():
399
- reveal_prelim = gr.Checkbox(label="Reveal preliminary results", info="Show all models, including models with very few human ratings.", scale=1)
400
- reloadbtn = gr.Button("Refresh", scale=3)
401
- reveal_prelim.input(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
402
- leaderboard.load(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
403
- reloadbtn.click(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
404
- # gr.Markdown("DISCLAIMER: The licenses listed may not be accurate or up to date, you are responsible for checking the licenses before using the models. Also note that some models may have additional usage restrictions.")
405
-
406
-
407
- def doloudnorm(path):
408
- data, rate = sf.read(path)
409
- meter = pyln.Meter(rate)
410
- loudness = meter.integrated_loudness(data)
411
- loudness_normalized_audio = pyln.normalize.loudness(data, loudness, -12.0)
412
- sf.write(path, loudness_normalized_audio, rate)
413
-
414
- def doresample(path_to_wav):
415
- pass
416
- ##########################
417
- # 2x speedup (hopefully) #
418
- ##########################
419
-
420
- def synthandreturn(text):
421
- text = text.strip()
422
- if len(text) > MAX_SAMPLE_TXT_LENGTH:
423
- raise gr.Error(f'You exceeded the limit of {MAX_SAMPLE_TXT_LENGTH} characters')
424
- if len(text) < MIN_SAMPLE_TXT_LENGTH:
425
- raise gr.Error(f'Please input a text longer than {MIN_SAMPLE_TXT_LENGTH} characters')
426
- if (
427
- # test toxicity if not prepared text
428
- text not in sents
429
- and toxicity.predict(text)['toxicity'] > 0.8
430
- ):
431
- print(f'Detected toxic content! "{text}"')
432
- raise gr.Error('Your text failed the toxicity test')
433
- if not text:
434
- raise gr.Error(f'You did not enter any text')
435
- # Check language
436
- try:
437
- if not detect(text) == "en":
438
- gr.Warning('Warning: The input text may not be in English')
439
- except:
440
- pass
441
- # Get two random models
442
- mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
443
- log_text(text)
444
- print("[debug] Using", mdl1, mdl2)
445
- def predict_and_update_result(text, model, result_storage):
446
- try:
447
- if model in AVAILABLE_MODELS:
448
- result = router.predict(text, AVAILABLE_MODELS[model].lower(), api_name="/synthesize")
449
- else:
450
- result = router.predict(text, model.lower(), api_name="/synthesize")
451
- except:
452
- raise gr.Error('Unable to call API, please try again :)')
453
- print('Done with', model)
454
- # try:
455
- # doresample(result)
456
- # except:
457
- # pass
458
- try:
459
- with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as f:
460
- audio = AudioSegment.from_file(result)
461
- current_sr = audio.frame_rate
462
- if current_sr > 24000:
463
- audio = audio.set_frame_rate(24000)
464
- try:
465
- print('Trying to normalize audio')
466
- audio = match_target_amplitude(audio, -20)
467
- except:
468
- print('[WARN] Unable to normalize audio')
469
- audio.export(f.name, format="wav")
470
- os.unlink(result)
471
- result = f.name
472
- except:
473
- pass
474
- if model in AVAILABLE_MODELS.keys(): model = AVAILABLE_MODELS[model]
475
- print(model)
476
- print(f"Running model {model}")
477
- result_storage[model] = result
478
- # try:
479
- # doloudnorm(result)
480
- # except:
481
- # pass
482
- mdl1k = mdl1
483
- mdl2k = mdl2
484
- print(mdl1k, mdl2k)
485
- if mdl1 in AVAILABLE_MODELS.keys(): mdl1k=AVAILABLE_MODELS[mdl1]
486
- if mdl2 in AVAILABLE_MODELS.keys(): mdl2k=AVAILABLE_MODELS[mdl2]
487
- results = {}
488
- print(f"Sending models {mdl1k} and {mdl2k} to API")
489
- thread1 = threading.Thread(target=predict_and_update_result, args=(text, mdl1k, results))
490
- thread2 = threading.Thread(target=predict_and_update_result, args=(text, mdl2k, results))
491
-
492
- thread1.start()
493
- thread2.start()
494
- thread1.join()
495
- thread2.join()
496
- #debug
497
- # print(results)
498
- # print(list(results.keys())[0])
499
- # y, sr = librosa.load(results[list(results.keys())[0]], sr=None)
500
- # print(sr)
501
- # print(list(results.keys())[1])
502
- # y, sr = librosa.load(results[list(results.keys())[1]], sr=None)
503
- # print(sr)
504
- #debug
505
- # outputs = [text, btn, r2, model1, model2, aud1, aud2, abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
506
-
507
- print(f"Retrieving models {mdl1k} and {mdl2k} from API")
508
- return (
509
- text,
510
- "Synthesize",
511
- gr.update(visible=True), # r2
512
- mdl1, # model1
513
- mdl2, # model2
514
- gr.update(visible=True, value=results[mdl1k]), # aud1
515
- gr.update(visible=True, value=results[mdl2k]), # aud2
516
- gr.update(visible=True, interactive=False), #abetter
517
- gr.update(visible=True, interactive=False), #bbetter
518
- gr.update(visible=False), #prevmodel1
519
- gr.update(visible=False), #prevmodel2
520
- gr.update(visible=False), #nxt round btn
521
- )
522
- # return (
523
- # text,
524
- # "Synthesize",
525
- # gr.update(visible=True), # r2
526
- # mdl1, # model1
527
- # mdl2, # model2
528
- # # 'Vote to reveal model A', # prevmodel1
529
- # gr.update(visible=True, value=router.predict(
530
- # text,
531
- # AVAILABLE_MODELS[mdl1],
532
- # api_name="/synthesize"
533
- # )), # aud1
534
- # # 'Vote to reveal model B', # prevmodel2
535
- # gr.update(visible=True, value=router.predict(
536
- # text,
537
- # AVAILABLE_MODELS[mdl2],
538
- # api_name="/synthesize"
539
- # )), # aud2
540
- # gr.update(visible=True, interactive=True),
541
- # gr.update(visible=True, interactive=True),
542
- # gr.update(visible=False),
543
- # gr.update(visible=False),
544
- # gr.update(visible=False), #nxt round btn
545
- # )
546
-
547
- def unlock_vote(btn_index, aplayed, bplayed):
548
- # sample played
549
- if btn_index == 0:
550
- aplayed = gr.State(value=True)
551
- if btn_index == 1:
552
- bplayed = gr.State(value=True)
553
-
554
- # both audio samples played
555
- if bool(aplayed) and bool(bplayed):
556
- print('Both audio samples played, voting unlocked')
557
- return [gr.update(interactive=True), gr.update(interactive=True), gr.update(), gr.update()]
558
-
559
- return [gr.update(), gr.update(), aplayed, bplayed]
560
-
561
- def randomsent():
562
- return random.choice(sents), '🎲'
563
- def clear_stuff():
564
- return "", "Synthesize", gr.update(visible=False), '', '', gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
565
-
566
- def disable():
567
- return [gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)]
568
- def enable():
569
- return [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)]
570
- with gr.Blocks() as vote:
571
- # sample played
572
- #aplayed = gr.State(value=False)
573
- #bplayed = gr.State(value=False)
574
- # voter ID
575
- useridstate = gr.State()
576
- gr.Markdown(INSTR)
577
- with gr.Group():
578
- with gr.Row():
579
- text = gr.Textbox(container=False, show_label=False, placeholder="Enter text to synthesize", lines=1, max_lines=1, scale=9999999, min_width=0)
580
- randomt = gr.Button('🎲', scale=0, min_width=0, variant='tool')
581
- randomt.click(randomsent, outputs=[text, randomt])
582
- btn = gr.Button("Synthesize", variant='primary')
583
- model1 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
584
- #model1 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=True)
585
- model2 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
586
- #model2 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=True)
587
- with gr.Row(visible=False) as r2:
588
- with gr.Column():
589
- with gr.Group():
590
- aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
591
- abetter = gr.Button("A is better", variant='primary')
592
- prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", text_align="center", lines=1, max_lines=1, visible=False)
593
- with gr.Column():
594
- with gr.Group():
595
- aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
596
- bbetter = gr.Button("B is better", variant='primary')
597
- prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="center", lines=1, max_lines=1, visible=False)
598
- nxtroundbtn = gr.Button('Next round', visible=False)
599
- # outputs = [text, btn, r2, model1, model2, prevmodel1, aud1, prevmodel2, aud2, abetter, bbetter]
600
- outputs = [
601
- text,
602
- btn,
603
- r2,
604
- model1,
605
- model2,
606
- aud1,
607
- aud2,
608
- abetter,
609
- bbetter,
610
- prevmodel1,
611
- prevmodel2,
612
- nxtroundbtn
613
- ]
614
- """
615
- text,
616
- "Synthesize",
617
- gr.update(visible=True), # r2
618
- mdl1, # model1
619
- mdl2, # model2
620
- gr.update(visible=True, value=results[mdl1]), # aud1
621
- gr.update(visible=True, value=results[mdl2]), # aud2
622
- gr.update(visible=True, interactive=False), #abetter
623
- gr.update(visible=True, interactive=False), #bbetter
624
- gr.update(visible=False), #prevmodel1
625
- gr.update(visible=False), #prevmodel2
626
- gr.update(visible=False), #nxt round btn"""
627
- btn.click(disable, outputs=[btn, abetter, bbetter]).then(synthandreturn, inputs=[text], outputs=outputs).then(enable, outputs=[btn, abetter, bbetter])
628
- nxtroundbtn.click(clear_stuff, outputs=outputs)
629
-
630
- # Allow interaction with the vote buttons only when both audio samples have finished playing
631
- #aud1.stop(unlock_vote, outputs=[abetter, bbetter, aplayed, bplayed], inputs=[gr.State(value=0), aplayed, bplayed])
632
- #aud2.stop(unlock_vote, outputs=[abetter, bbetter, aplayed, bplayed], inputs=[gr.State(value=1), aplayed, bplayed])
633
-
634
- # nxt_outputs = [prevmodel1, prevmodel2, abetter, bbetter]
635
- nxt_outputs = [abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
636
- abetter.click(a_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate])
637
- bbetter.click(b_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate])
638
- # skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
639
-
640
- # bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate])
641
- # bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate])
642
-
643
- # vote.load(reload, outputs=[aud1, aud2, model1, model2])
644
 
645
- with gr.Blocks() as about:
646
- gr.Markdown(ABOUT)
647
- # with gr.Blocks() as admin:
648
- # rdb = gr.Button("Reload Audio Dataset")
649
- # # rdb.click(reload_audio_dataset, outputs=rdb)
650
- # with gr.Group():
651
- # dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db")
652
- # ddb = gr.Button("Delete DB")
653
- # ddb.click(del_db, inputs=dbtext, outputs=ddb)
654
- with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="TTS Arena") as demo:
655
- gr.Markdown(DESCR)
656
- # gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)'])
657
- gr.TabbedInterface([vote, leaderboard, about], ['🗳️ Vote', '🏆 Leaderboard', '📄 About'])
658
- if CITATION_TEXT:
659
- with gr.Row():
660
- with gr.Accordion("Citation", open=False):
661
- gr.Markdown(f"If you use this data in your publication, please cite us!\n\nCopy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```\n\nPlease remember that all generated audio clips should be assumed unsuitable for redistribution or commercial use.")
662
 
663
 
664
  demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False)
 
18
  change_in_dBFS = target_dBFS - sound.dBFS
19
  return sound.apply_gain(change_in_dBFS)
20
 
 
 
 
 
21
 
22
 
23
  toxicity = Detoxify('original')
24
  with open('bsc.txt') as f:
25
  sents = f.read().strip().splitlines()
26
+
27
+
28
  ####################################
29
  # Constants
30
  ####################################
31
  AVAILABLE_MODELS = {
32
  'XTTSv2': 'xtts',
 
33
  'ElevenLabs': 'eleven',
 
34
  'OpenVoice V2': 'openvoicev2',
35
  'Play.HT 2.0': 'playht',
 
36
  'MeloTTS': 'melo',
37
  'StyleTTS 2': 'styletts2',
38
  'GPT-SoVITS': 'sovits',
 
39
  'VoiceCraft 2.0': 'voicecraft',
40
  'Parler TTS': 'parler'
41
  }
 
49
  # If /data available => means local storage is enabled => let's use it!
50
  DB_PATH = f"/data/{DB_NAME}" if os.path.isdir("/data") else DB_NAME
51
  print(f"Using {DB_PATH}")
52
+
 
 
 
 
 
 
 
53
 
54
  ####################################
55
  # Functions
 
147
  font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
148
  )
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
 
153
  demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False)