Spaces:
Runtime error
Runtime error
felix
commited on
Commit
·
5f65cec
1
Parent(s):
ae85651
update with app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
|
@@ -85,13 +86,13 @@ def change_tab(query_param: str):
|
|
| 85 |
|
| 86 |
# Searching and filtering
|
| 87 |
def update_table(
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
):
|
| 96 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 97 |
filtered_df = filter_queries(query, filtered_df)
|
|
@@ -111,7 +112,7 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
| 111 |
# We use COLS to maintain sorting
|
| 112 |
filtered_df = df[
|
| 113 |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
|
| 114 |
-
|
| 115 |
return filtered_df
|
| 116 |
|
| 117 |
|
|
@@ -136,7 +137,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 136 |
|
| 137 |
|
| 138 |
def filter_models(
|
| 139 |
-
|
| 140 |
) -> pd.DataFrame:
|
| 141 |
# Show all models
|
| 142 |
if show_deleted:
|
|
@@ -156,293 +157,371 @@ def filter_models(
|
|
| 156 |
return filtered_df
|
| 157 |
|
| 158 |
|
| 159 |
-
demo = gr.Blocks(css=custom_css)
|
| 160 |
-
with demo:
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
value=original_df[COLS],
|
| 227 |
-
headers=COLS,
|
| 228 |
-
datatype=TYPES,
|
| 229 |
-
max_rows=None,
|
| 230 |
-
visible=False,
|
| 231 |
-
)
|
| 232 |
-
search_bar.submit(
|
| 233 |
-
update_table,
|
| 234 |
-
[
|
| 235 |
-
hidden_leaderboard_table_for_search,
|
| 236 |
-
shown_columns,
|
| 237 |
-
filter_columns_type,
|
| 238 |
-
filter_columns_precision,
|
| 239 |
-
filter_columns_size,
|
| 240 |
-
deleted_models_visibility,
|
| 241 |
-
search_bar,
|
| 242 |
-
],
|
| 243 |
-
leaderboard_table,
|
| 244 |
-
)
|
| 245 |
-
shown_columns.change(
|
| 246 |
-
update_table,
|
| 247 |
-
[
|
| 248 |
-
hidden_leaderboard_table_for_search,
|
| 249 |
-
shown_columns,
|
| 250 |
-
filter_columns_type,
|
| 251 |
-
filter_columns_precision,
|
| 252 |
-
filter_columns_size,
|
| 253 |
-
deleted_models_visibility,
|
| 254 |
-
search_bar,
|
| 255 |
-
],
|
| 256 |
-
leaderboard_table,
|
| 257 |
-
queue=True,
|
| 258 |
-
)
|
| 259 |
-
filter_columns_type.change(
|
| 260 |
-
update_table,
|
| 261 |
-
[
|
| 262 |
-
hidden_leaderboard_table_for_search,
|
| 263 |
-
shown_columns,
|
| 264 |
-
filter_columns_type,
|
| 265 |
-
filter_columns_precision,
|
| 266 |
-
filter_columns_size,
|
| 267 |
-
deleted_models_visibility,
|
| 268 |
-
search_bar,
|
| 269 |
-
],
|
| 270 |
-
leaderboard_table,
|
| 271 |
-
queue=True,
|
| 272 |
-
)
|
| 273 |
-
filter_columns_precision.change(
|
| 274 |
-
update_table,
|
| 275 |
-
[
|
| 276 |
-
hidden_leaderboard_table_for_search,
|
| 277 |
-
shown_columns,
|
| 278 |
-
filter_columns_type,
|
| 279 |
-
filter_columns_precision,
|
| 280 |
-
filter_columns_size,
|
| 281 |
-
deleted_models_visibility,
|
| 282 |
-
search_bar,
|
| 283 |
-
],
|
| 284 |
-
leaderboard_table,
|
| 285 |
-
queue=True,
|
| 286 |
-
)
|
| 287 |
-
filter_columns_size.change(
|
| 288 |
-
update_table,
|
| 289 |
-
[
|
| 290 |
-
hidden_leaderboard_table_for_search,
|
| 291 |
-
shown_columns,
|
| 292 |
-
filter_columns_type,
|
| 293 |
-
filter_columns_precision,
|
| 294 |
-
filter_columns_size,
|
| 295 |
-
deleted_models_visibility,
|
| 296 |
-
search_bar,
|
| 297 |
-
],
|
| 298 |
-
leaderboard_table,
|
| 299 |
-
queue=True,
|
| 300 |
-
)
|
| 301 |
-
deleted_models_visibility.change(
|
| 302 |
-
update_table,
|
| 303 |
-
[
|
| 304 |
-
hidden_leaderboard_table_for_search,
|
| 305 |
-
shown_columns,
|
| 306 |
-
filter_columns_type,
|
| 307 |
-
filter_columns_precision,
|
| 308 |
-
filter_columns_size,
|
| 309 |
-
deleted_models_visibility,
|
| 310 |
-
search_bar,
|
| 311 |
-
],
|
| 312 |
-
leaderboard_table,
|
| 313 |
-
queue=True,
|
| 314 |
-
)
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
# chart = create_metric_plot_obj(
|
| 321 |
-
# plot_df,
|
| 322 |
-
# ["Average ⬆️"],
|
| 323 |
-
# HUMAN_BASELINES,
|
| 324 |
-
# title="Average of Top Scores and Human Baseline Over Time",
|
| 325 |
-
# )
|
| 326 |
-
# gr.Plot(value=chart, interactive=False, width=500, height=500)
|
| 327 |
-
# with gr.Column():
|
| 328 |
-
# chart = create_metric_plot_obj(
|
| 329 |
-
# plot_df,
|
| 330 |
-
# ["ARC", "HellaSwag", "MMLU", "TruthfulQA", "Winogrande", "GSM8K", "DROP"],
|
| 331 |
-
# HUMAN_BASELINES,
|
| 332 |
-
# title="Top Scores and Human Baseline Over Time",
|
| 333 |
-
# )
|
| 334 |
-
# gr.Plot(value=chart, interactive=False, width=500, height=500)
|
| 335 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 336 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 337 |
-
|
| 338 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 339 |
-
with gr.Column():
|
| 340 |
-
with gr.Row():
|
| 341 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 342 |
-
|
| 343 |
-
with gr.Column():
|
| 344 |
-
with gr.Accordion(
|
| 345 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 346 |
-
open=False,
|
| 347 |
-
):
|
| 348 |
-
with gr.Row():
|
| 349 |
-
finished_eval_table = gr.components.Dataframe(
|
| 350 |
-
value=finished_eval_queue_df,
|
| 351 |
-
headers=EVAL_COLS,
|
| 352 |
-
datatype=EVAL_TYPES,
|
| 353 |
-
max_rows=5,
|
| 354 |
-
)
|
| 355 |
-
with gr.Accordion(
|
| 356 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 357 |
-
open=False,
|
| 358 |
-
):
|
| 359 |
-
with gr.Row():
|
| 360 |
-
running_eval_table = gr.components.Dataframe(
|
| 361 |
-
value=running_eval_queue_df,
|
| 362 |
-
headers=EVAL_COLS,
|
| 363 |
-
datatype=EVAL_TYPES,
|
| 364 |
-
max_rows=5,
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
with gr.Accordion(
|
| 368 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 369 |
-
open=False,
|
| 370 |
-
):
|
| 371 |
-
with gr.Row():
|
| 372 |
-
pending_eval_table = gr.components.Dataframe(
|
| 373 |
-
value=pending_eval_queue_df,
|
| 374 |
-
headers=EVAL_COLS,
|
| 375 |
-
datatype=EVAL_TYPES,
|
| 376 |
-
max_rows=5,
|
| 377 |
-
)
|
| 378 |
-
with gr.Row():
|
| 379 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 380 |
-
|
| 381 |
-
with gr.Row():
|
| 382 |
-
with gr.Column():
|
| 383 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 384 |
-
revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
|
| 385 |
-
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
| 386 |
-
model_type = gr.Dropdown(
|
| 387 |
-
choices=[t.to_str(" : ") for t in ModelType],
|
| 388 |
-
label="Model type",
|
| 389 |
-
multiselect=False,
|
| 390 |
-
value=None,
|
| 391 |
-
interactive=True,
|
| 392 |
-
)
|
| 393 |
-
|
| 394 |
-
with gr.Column():
|
| 395 |
-
precision = gr.Dropdown(
|
| 396 |
-
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ"],
|
| 397 |
-
label="Precision",
|
| 398 |
-
multiselect=False,
|
| 399 |
-
value="float16",
|
| 400 |
-
interactive=True,
|
| 401 |
-
)
|
| 402 |
-
weight_type = gr.Dropdown(
|
| 403 |
-
choices=["Original", "Delta", "Adapter"],
|
| 404 |
-
label="Weights type",
|
| 405 |
-
multiselect=False,
|
| 406 |
-
value="Original",
|
| 407 |
-
interactive=True,
|
| 408 |
-
)
|
| 409 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 410 |
-
|
| 411 |
-
submit_button = gr.Button("Submit Eval")
|
| 412 |
-
submission_result = gr.Markdown()
|
| 413 |
-
submit_button.click(
|
| 414 |
-
add_new_eval,
|
| 415 |
-
[
|
| 416 |
-
model_name_textbox,
|
| 417 |
-
base_model_name_textbox,
|
| 418 |
-
revision_name_textbox,
|
| 419 |
-
precision,
|
| 420 |
-
private,
|
| 421 |
-
weight_type,
|
| 422 |
-
model_type,
|
| 423 |
-
],
|
| 424 |
-
submission_result,
|
| 425 |
-
)
|
| 426 |
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
lines=20,
|
| 433 |
-
elem_id="citation-button",
|
| 434 |
-
show_copy_button=True,
|
| 435 |
-
)
|
| 436 |
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
scheduler.start()
|
| 448 |
-
demo.queue(concurrency_count=40).launch()
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import pandas as pd
|
|
|
|
| 86 |
|
| 87 |
# Searching and filtering
|
| 88 |
def update_table(
|
| 89 |
+
hidden_df: pd.DataFrame,
|
| 90 |
+
columns: list,
|
| 91 |
+
type_query: list,
|
| 92 |
+
precision_query: str,
|
| 93 |
+
size_query: list,
|
| 94 |
+
show_deleted: bool,
|
| 95 |
+
query: str,
|
| 96 |
):
|
| 97 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 98 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
| 112 |
# We use COLS to maintain sorting
|
| 113 |
filtered_df = df[
|
| 114 |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
|
| 115 |
+
]
|
| 116 |
return filtered_df
|
| 117 |
|
| 118 |
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
def filter_models(
|
| 140 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 141 |
) -> pd.DataFrame:
|
| 142 |
# Show all models
|
| 143 |
if show_deleted:
|
|
|
|
| 157 |
return filtered_df
|
| 158 |
|
| 159 |
|
| 160 |
+
# demo = gr.Blocks(css=custom_css)
|
| 161 |
+
# with demo:
|
| 162 |
+
# gr.HTML(TITLE)
|
| 163 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 164 |
+
#
|
| 165 |
+
# with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 166 |
+
# with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 167 |
+
# with gr.Row():
|
| 168 |
+
# with gr.Column():
|
| 169 |
+
# with gr.Row():
|
| 170 |
+
# search_bar = gr.Textbox(
|
| 171 |
+
# placeholder=" 🔍 Search for your model and press ENTER...",
|
| 172 |
+
# show_label=False,
|
| 173 |
+
# elem_id="search-bar",
|
| 174 |
+
# )
|
| 175 |
+
# with gr.Row():
|
| 176 |
+
# shown_columns = gr.CheckboxGroup(
|
| 177 |
+
# choices=[
|
| 178 |
+
# c
|
| 179 |
+
# for c in COLS
|
| 180 |
+
# if c
|
| 181 |
+
# not in [
|
| 182 |
+
# AutoEvalColumn.dummy.name,
|
| 183 |
+
# AutoEvalColumn.model.name,
|
| 184 |
+
# AutoEvalColumn.model_type_symbol.name,
|
| 185 |
+
# AutoEvalColumn.still_on_hub.name,
|
| 186 |
+
# ]
|
| 187 |
+
# ],
|
| 188 |
+
# value=[
|
| 189 |
+
# c
|
| 190 |
+
# for c in COLS_LITE
|
| 191 |
+
# if c
|
| 192 |
+
# not in [
|
| 193 |
+
# AutoEvalColumn.dummy.name,
|
| 194 |
+
# AutoEvalColumn.model.name,
|
| 195 |
+
# AutoEvalColumn.model_type_symbol.name,
|
| 196 |
+
# AutoEvalColumn.still_on_hub.name,
|
| 197 |
+
# ]
|
| 198 |
+
# ],
|
| 199 |
+
# label="Select columns to show",
|
| 200 |
+
# elem_id="column-select",
|
| 201 |
+
# interactive=True,
|
| 202 |
+
# )
|
| 203 |
+
# with gr.Row():
|
| 204 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 205 |
+
# value=True, label="Show gated/private/deleted models", interactive=True
|
| 206 |
+
# )
|
| 207 |
+
# with gr.Column(min_width=320):
|
| 208 |
+
# with gr.Box(elem_id="box-filter"):
|
| 209 |
+
# filter_columns_type = gr.CheckboxGroup(
|
| 210 |
+
# label="Model types",
|
| 211 |
+
# choices=[
|
| 212 |
+
# ModelType.PT.to_str(),
|
| 213 |
+
# ModelType.FT.to_str(),
|
| 214 |
+
# ModelType.IFT.to_str(),
|
| 215 |
+
# ModelType.RL.to_str(),
|
| 216 |
+
# ],
|
| 217 |
+
# value=[
|
| 218 |
+
# ModelType.PT.to_str(),
|
| 219 |
+
# ModelType.FT.to_str(),
|
| 220 |
+
# ModelType.IFT.to_str(),
|
| 221 |
+
# ModelType.RL.to_str(),
|
| 222 |
+
# ],
|
| 223 |
+
# interactive=True,
|
| 224 |
+
# elem_id="filter-columns-type",
|
| 225 |
+
# )
|
| 226 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
| 227 |
+
# label="Precision",
|
| 228 |
+
# choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
| 229 |
+
# value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
| 230 |
+
# interactive=True,
|
| 231 |
+
# elem_id="filter-columns-precision",
|
| 232 |
+
# )
|
| 233 |
+
# filter_columns_size = gr.CheckboxGroup(
|
| 234 |
+
# label="Model sizes",
|
| 235 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
| 236 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
| 237 |
+
# interactive=True,
|
| 238 |
+
# elem_id="filter-columns-size",
|
| 239 |
+
# )
|
| 240 |
+
#
|
| 241 |
+
# leaderboard_table = gr.components.Dataframe(
|
| 242 |
+
# value=leaderboard_df[
|
| 243 |
+
# [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
|
| 244 |
+
# + shown_columns.value
|
| 245 |
+
# + [AutoEvalColumn.dummy.name]
|
| 246 |
+
# ],
|
| 247 |
+
# headers=[
|
| 248 |
+
# AutoEvalColumn.model_type_symbol.name,
|
| 249 |
+
# AutoEvalColumn.model.name,
|
| 250 |
+
# ]
|
| 251 |
+
# + shown_columns.value
|
| 252 |
+
# + [AutoEvalColumn.dummy.name],
|
| 253 |
+
# datatype=TYPES,
|
| 254 |
+
# max_rows=None,
|
| 255 |
+
# elem_id="leaderboard-table",
|
| 256 |
+
# interactive=False,
|
| 257 |
+
# visible=True,
|
| 258 |
+
# )
|
| 259 |
+
#
|
| 260 |
+
# # Dummy leaderboard for handling the case when the user uses backspace key
|
| 261 |
+
# hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 262 |
+
# value=original_df,
|
| 263 |
+
# headers=COLS,
|
| 264 |
+
# datatype=TYPES,
|
| 265 |
+
# max_rows=None,
|
| 266 |
+
# visible=False,
|
| 267 |
+
# )
|
| 268 |
+
# search_bar.submit(
|
| 269 |
+
# update_table,
|
| 270 |
+
# [
|
| 271 |
+
# hidden_leaderboard_table_for_search,
|
| 272 |
+
# leaderboard_table,
|
| 273 |
+
# shown_columns,
|
| 274 |
+
# filter_columns_type,
|
| 275 |
+
# filter_columns_precision,
|
| 276 |
+
# filter_columns_size,
|
| 277 |
+
# deleted_models_visibility,
|
| 278 |
+
# search_bar,
|
| 279 |
+
# ],
|
| 280 |
+
# leaderboard_table,
|
| 281 |
+
# )
|
| 282 |
+
# shown_columns.change(
|
| 283 |
+
# update_table,
|
| 284 |
+
# [
|
| 285 |
+
# hidden_leaderboard_table_for_search,
|
| 286 |
+
# leaderboard_table,
|
| 287 |
+
# shown_columns,
|
| 288 |
+
# filter_columns_type,
|
| 289 |
+
# filter_columns_precision,
|
| 290 |
+
# filter_columns_size,
|
| 291 |
+
# deleted_models_visibility,
|
| 292 |
+
# search_bar,
|
| 293 |
+
# ],
|
| 294 |
+
# leaderboard_table,
|
| 295 |
+
# queue=True,
|
| 296 |
+
# )
|
| 297 |
+
# filter_columns_type.change(
|
| 298 |
+
# update_table,
|
| 299 |
+
# [
|
| 300 |
+
# hidden_leaderboard_table_for_search,
|
| 301 |
+
# leaderboard_table,
|
| 302 |
+
# shown_columns,
|
| 303 |
+
# filter_columns_type,
|
| 304 |
+
# filter_columns_precision,
|
| 305 |
+
# filter_columns_size,
|
| 306 |
+
# deleted_models_visibility,
|
| 307 |
+
# search_bar,
|
| 308 |
+
# ],
|
| 309 |
+
# leaderboard_table,
|
| 310 |
+
# queue=True,
|
| 311 |
+
# )
|
| 312 |
+
# filter_columns_precision.change(
|
| 313 |
+
# update_table,
|
| 314 |
+
# [
|
| 315 |
+
# hidden_leaderboard_table_for_search,
|
| 316 |
+
# leaderboard_table,
|
| 317 |
+
# shown_columns,
|
| 318 |
+
# filter_columns_type,
|
| 319 |
+
# filter_columns_precision,
|
| 320 |
+
# filter_columns_size,
|
| 321 |
+
# deleted_models_visibility,
|
| 322 |
+
# search_bar,
|
| 323 |
+
# ],
|
| 324 |
+
# leaderboard_table,
|
| 325 |
+
# queue=True,
|
| 326 |
+
# )
|
| 327 |
+
# filter_columns_size.change(
|
| 328 |
+
# update_table,
|
| 329 |
+
# [
|
| 330 |
+
# hidden_leaderboard_table_for_search,
|
| 331 |
+
# leaderboard_table,
|
| 332 |
+
# shown_columns,
|
| 333 |
+
# filter_columns_type,
|
| 334 |
+
# filter_columns_precision,
|
| 335 |
+
# filter_columns_size,
|
| 336 |
+
# deleted_models_visibility,
|
| 337 |
+
# search_bar,
|
| 338 |
+
# ],
|
| 339 |
+
# leaderboard_table,
|
| 340 |
+
# queue=True,
|
| 341 |
+
# )
|
| 342 |
+
# deleted_models_visibility.change(
|
| 343 |
+
# update_table,
|
| 344 |
+
# [
|
| 345 |
+
# hidden_leaderboard_table_for_search,
|
| 346 |
+
# leaderboard_table,
|
| 347 |
+
# shown_columns,
|
| 348 |
+
# filter_columns_type,
|
| 349 |
+
# filter_columns_precision,
|
| 350 |
+
# filter_columns_size,
|
| 351 |
+
# deleted_models_visibility,
|
| 352 |
+
# search_bar,
|
| 353 |
+
# ],
|
| 354 |
+
# leaderboard_table,
|
| 355 |
+
# queue=True,
|
| 356 |
+
# )
|
| 357 |
+
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 358 |
+
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 359 |
+
#
|
| 360 |
+
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 361 |
+
# with gr.Column():
|
| 362 |
+
# with gr.Row():
|
| 363 |
+
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 364 |
+
#
|
| 365 |
+
# with gr.Column():
|
| 366 |
+
# with gr.Accordion(
|
| 367 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 368 |
+
# open=False,
|
| 369 |
+
# ):
|
| 370 |
+
# with gr.Row():
|
| 371 |
+
# finished_eval_table = gr.components.Dataframe(
|
| 372 |
+
# value=finished_eval_queue_df,
|
| 373 |
+
# headers=EVAL_COLS,
|
| 374 |
+
# datatype=EVAL_TYPES,
|
| 375 |
+
# max_rows=5,
|
| 376 |
+
# )
|
| 377 |
+
# with gr.Accordion(
|
| 378 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 379 |
+
# open=False,
|
| 380 |
+
# ):
|
| 381 |
+
# with gr.Row():
|
| 382 |
+
# running_eval_table = gr.components.Dataframe(
|
| 383 |
+
# value=running_eval_queue_df,
|
| 384 |
+
# headers=EVAL_COLS,
|
| 385 |
+
# datatype=EVAL_TYPES,
|
| 386 |
+
# max_rows=5,
|
| 387 |
+
# )
|
| 388 |
+
#
|
| 389 |
+
# with gr.Accordion(
|
| 390 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 391 |
+
# open=False,
|
| 392 |
+
# ):
|
| 393 |
+
# with gr.Row():
|
| 394 |
+
# pending_eval_table = gr.components.Dataframe(
|
| 395 |
+
# value=pending_eval_queue_df,
|
| 396 |
+
# headers=EVAL_COLS,
|
| 397 |
+
# datatype=EVAL_TYPES,
|
| 398 |
+
# max_rows=5,
|
| 399 |
+
# )
|
| 400 |
+
# with gr.Row():
|
| 401 |
+
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 402 |
+
#
|
| 403 |
+
# with gr.Row():
|
| 404 |
+
# with gr.Column():
|
| 405 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
| 406 |
+
# revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
|
| 407 |
+
# private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
| 408 |
+
# model_type = gr.Dropdown(
|
| 409 |
+
# choices=[
|
| 410 |
+
# ModelType.PT.to_str(" : "),
|
| 411 |
+
# ModelType.FT.to_str(" : "),
|
| 412 |
+
# ModelType.IFT.to_str(" : "),
|
| 413 |
+
# ModelType.RL.to_str(" : "),
|
| 414 |
+
# ],
|
| 415 |
+
# label="Model type",
|
| 416 |
+
# multiselect=False,
|
| 417 |
+
# value=None,
|
| 418 |
+
# interactive=True,
|
| 419 |
+
# )
|
| 420 |
+
#
|
| 421 |
+
# with gr.Column():
|
| 422 |
+
# precision = gr.Dropdown(
|
| 423 |
+
# choices=[
|
| 424 |
+
# "float16",
|
| 425 |
+
# "bfloat16",
|
| 426 |
+
# "8bit (LLM.int8)",
|
| 427 |
+
# "4bit (QLoRA / FP4)",
|
| 428 |
+
# "GPTQ"
|
| 429 |
+
# ],
|
| 430 |
+
# label="Precision",
|
| 431 |
+
# multiselect=False,
|
| 432 |
+
# value="float16",
|
| 433 |
+
# interactive=True,
|
| 434 |
+
# )
|
| 435 |
+
# weight_type = gr.Dropdown(
|
| 436 |
+
# choices=["Original", "Delta", "Adapter"],
|
| 437 |
+
# label="Weights type",
|
| 438 |
+
# multiselect=False,
|
| 439 |
+
# value="Original",
|
| 440 |
+
# interactive=True,
|
| 441 |
+
# )
|
| 442 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 443 |
+
#
|
| 444 |
+
# submit_button = gr.Button("Submit Eval")
|
| 445 |
+
# submission_result = gr.Markdown()
|
| 446 |
+
# submit_button.click(
|
| 447 |
+
# add_new_eval,
|
| 448 |
+
# [
|
| 449 |
+
# model_name_textbox,
|
| 450 |
+
# base_model_name_textbox,
|
| 451 |
+
# revision_name_textbox,
|
| 452 |
+
# precision,
|
| 453 |
+
# private,
|
| 454 |
+
# weight_type,
|
| 455 |
+
# model_type,
|
| 456 |
+
# ],
|
| 457 |
+
# submission_result,
|
| 458 |
+
# )
|
| 459 |
+
#
|
| 460 |
+
# with gr.Row():
|
| 461 |
+
# with gr.Accordion("📙 Citation", open=False):
|
| 462 |
+
# citation_button = gr.Textbox(
|
| 463 |
+
# value=CITATION_BUTTON_TEXT,
|
| 464 |
+
# label=CITATION_BUTTON_LABEL,
|
| 465 |
+
# elem_id="citation-button",
|
| 466 |
+
# ).style(show_copy_button=True)
|
| 467 |
+
#
|
| 468 |
+
# dummy = gr.Textbox(visible=False)
|
| 469 |
+
# demo.load(
|
| 470 |
+
# change_tab,
|
| 471 |
+
# dummy,
|
| 472 |
+
# tabs,
|
| 473 |
+
# _js=get_window_url_params,
|
| 474 |
+
# )
|
| 475 |
+
|
| 476 |
+
dummy1 = gr.Textbox(visible=False)
|
| 477 |
+
|
| 478 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 479 |
+
headers=COLS,
|
| 480 |
+
datatype=TYPES,
|
| 481 |
+
max_rows=None,
|
| 482 |
+
visible=False,
|
| 483 |
+
)
|
| 484 |
|
| 485 |
+
def display(x, y):
|
| 486 |
+
return original_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
+
INTRODUCTION_TEXT = """
|
| 489 |
+
This is a copied space from Open Source LLM leaderboard. Instead of displaying
|
| 490 |
+
the results as table the space simply provides a gradio API interface to access
|
| 491 |
+
the full leaderboard data easily.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
|
| 493 |
+
Example python on how to access the data:
|
| 494 |
+
```python
|
| 495 |
+
from gradio_client import Client
|
| 496 |
+
import json
|
| 497 |
+
client = Client("https://felixz-open-llm-leaderboard.hf.space/")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
|
| 499 |
+
json_data = client.predict("","", api_name='/predict')
|
| 500 |
+
|
| 501 |
+
with open(json_data, 'r') as file:
|
| 502 |
+
file_data = file.read()
|
| 503 |
+
|
| 504 |
+
# Load the JSON data
|
| 505 |
+
data = json.loads(file_data)
|
| 506 |
+
|
| 507 |
+
# Get the headers and the data
|
| 508 |
+
headers = data['headers']
|
| 509 |
+
data = data['data']
|
| 510 |
+
```
|
| 511 |
+
|
| 512 |
+
"""
|
| 513 |
+
|
| 514 |
+
interface = gr.Interface(
|
| 515 |
+
fn=display,
|
| 516 |
+
inputs=[ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"),
|
| 517 |
+
dummy1
|
| 518 |
+
],
|
| 519 |
+
outputs=[hidden_leaderboard_table_for_search]
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
#scheduler = BackgroundScheduler()
|
| 523 |
+
#scheduler.add_job(restart_space, "interval", seconds=12000)
|
| 524 |
+
#scheduler.start()
|
| 525 |
|
| 526 |
+
interface.launch()
|
| 527 |
+
#demo.queue(concurrency_count=40).launch()
|
|
|
|
|
|