Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,13 +24,14 @@ model_name = "mistralai/Mistral-7B-v0.1"
|
|
| 24 |
# 2. MMLU-Pro Evaluation
|
| 25 |
# ---------------------------------------------------------------------------
|
| 26 |
@spaces.GPU(duration=240)
|
| 27 |
-
def run_mmlu_evaluation(
|
| 28 |
"""
|
| 29 |
Runs the MMLU evaluation with the specified parameters.
|
| 30 |
|
| 31 |
Args:
|
| 32 |
-
|
| 33 |
num_subjects (int): Number of subjects to evaluate (1-14)
|
|
|
|
| 34 |
num_shots (int): Number of few-shot examples (0-5)
|
| 35 |
all_questions (bool): Whether to evaluate all questions per subject
|
| 36 |
num_questions (int): Number of examples per subject (1-100 or all)
|
|
@@ -38,8 +39,11 @@ def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, nu
|
|
| 38 |
"""
|
| 39 |
try:
|
| 40 |
# Convert parameters if needed
|
| 41 |
-
if
|
| 42 |
num_subjects = -1
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
if all_questions:
|
| 45 |
num_questions = -1
|
|
@@ -50,7 +54,8 @@ def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, nu
|
|
| 50 |
model_name,
|
| 51 |
num_subjects=num_subjects,
|
| 52 |
num_questions=num_questions,
|
| 53 |
-
num_shots=num_shots,
|
|
|
|
| 54 |
)
|
| 55 |
elapsed_time = time.time() - start_time
|
| 56 |
|
|
@@ -131,6 +136,17 @@ with gr.Blocks(css="""
|
|
| 131 |
h1 {
|
| 132 |
text-align: center;
|
| 133 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
""") as demo:
|
| 135 |
gr.Markdown("# Head-to-Head Model Evaluation Comparator")
|
| 136 |
gr.Markdown("""
|
|
@@ -142,7 +158,7 @@ with gr.Blocks(css="""
|
|
| 142 |
""")
|
| 143 |
|
| 144 |
# Dataset Selection Section
|
| 145 |
-
gr.Markdown("## (A) Select Dataset for Evaluation")
|
| 146 |
|
| 147 |
with gr.Row():
|
| 148 |
dataset_dropdown = gr.Dropdown(
|
|
@@ -165,35 +181,74 @@ with gr.Blocks(css="""
|
|
| 165 |
gr.Markdown(" ")
|
| 166 |
gr.Markdown(" ")
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
# MMLU Config Container - Initially hidden until dataset is selected
|
| 169 |
with gr.Column(visible=False) as mmlu_config_container:
|
| 170 |
-
gr.Markdown("## (B) Select Dataset Configuration Options")
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
label="Evaluate All Subjects",
|
| 175 |
-
value=False,
|
| 176 |
-
info="When checked, evaluates all 14 MMLU-Pro subjects"
|
| 177 |
-
)
|
| 178 |
-
num_subjects_slider = gr.Slider(
|
| 179 |
-
minimum=1,
|
| 180 |
-
maximum=14,
|
| 181 |
-
value=14,
|
| 182 |
-
step=1,
|
| 183 |
-
label="Number of Subjects",
|
| 184 |
-
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order.",
|
| 185 |
-
interactive=True
|
| 186 |
-
)
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
with gr.Row():
|
| 199 |
all_questions_checkbox = gr.Checkbox(
|
|
@@ -296,14 +351,20 @@ with gr.Blocks(css="""
|
|
| 296 |
outputs=[preview_visibility, dataset_preview_container, preview_output, preview_toggle]
|
| 297 |
)
|
| 298 |
|
| 299 |
-
#
|
| 300 |
-
def
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
|
|
|
| 307 |
)
|
| 308 |
|
| 309 |
# Update interface based on all_questions checkbox
|
|
@@ -319,6 +380,20 @@ with gr.Blocks(css="""
|
|
| 319 |
outputs=[questions_container, questions_info_text]
|
| 320 |
)
|
| 321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
# Function to disable UI components during evaluation
|
| 323 |
def start_evaluation(state):
|
| 324 |
if state["running"]:
|
|
@@ -341,8 +416,9 @@ with gr.Blocks(css="""
|
|
| 341 |
|
| 342 |
return [
|
| 343 |
state,
|
| 344 |
-
gr.update(interactive=False), #
|
| 345 |
gr.update(interactive=False), # num_subjects_slider
|
|
|
|
| 346 |
gr.update(interactive=False), # num_shots_slider
|
| 347 |
gr.update(interactive=False), # all_questions_checkbox
|
| 348 |
gr.update(interactive=False), # num_questions_slider
|
|
@@ -365,8 +441,9 @@ with gr.Blocks(css="""
|
|
| 365 |
state["running"] = False
|
| 366 |
return [
|
| 367 |
state,
|
| 368 |
-
gr.update(interactive=True), #
|
| 369 |
gr.update(interactive=True), # num_subjects_slider
|
|
|
|
| 370 |
gr.update(interactive=True), # num_shots_slider
|
| 371 |
gr.update(interactive=True), # all_questions_checkbox
|
| 372 |
gr.update(interactive=True), # num_questions_slider
|
|
@@ -383,8 +460,9 @@ with gr.Blocks(css="""
|
|
| 383 |
inputs=[evaluation_state],
|
| 384 |
outputs=[
|
| 385 |
evaluation_state,
|
| 386 |
-
|
| 387 |
num_subjects_slider,
|
|
|
|
| 388 |
num_shots_slider,
|
| 389 |
all_questions_checkbox,
|
| 390 |
num_questions_slider,
|
|
@@ -395,10 +473,19 @@ with gr.Blocks(css="""
|
|
| 395 |
results_table_container
|
| 396 |
]
|
| 397 |
).then(
|
| 398 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
inputs=[
|
| 400 |
-
|
| 401 |
num_subjects_slider,
|
|
|
|
| 402 |
num_shots_slider,
|
| 403 |
all_questions_checkbox,
|
| 404 |
num_questions_slider
|
|
@@ -408,7 +495,7 @@ with gr.Blocks(css="""
|
|
| 408 |
results_table,
|
| 409 |
eval_mmlu_button,
|
| 410 |
cancel_mmlu_button,
|
| 411 |
-
|
| 412 |
num_subjects_slider,
|
| 413 |
num_shots_slider,
|
| 414 |
all_questions_checkbox,
|
|
@@ -427,8 +514,9 @@ with gr.Blocks(css="""
|
|
| 427 |
inputs=[evaluation_state],
|
| 428 |
outputs=[
|
| 429 |
evaluation_state,
|
| 430 |
-
|
| 431 |
num_subjects_slider,
|
|
|
|
| 432 |
num_shots_slider,
|
| 433 |
all_questions_checkbox,
|
| 434 |
num_questions_slider,
|
|
|
|
| 24 |
# 2. MMLU-Pro Evaluation
|
| 25 |
# ---------------------------------------------------------------------------
|
| 26 |
@spaces.GPU(duration=240)
|
| 27 |
+
def run_mmlu_evaluation(subject_selection_mode, num_subjects, selected_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()):
|
| 28 |
"""
|
| 29 |
Runs the MMLU evaluation with the specified parameters.
|
| 30 |
|
| 31 |
Args:
|
| 32 |
+
subject_selection_mode (str): Mode of subject selection ("all", "number", or "specific")
|
| 33 |
num_subjects (int): Number of subjects to evaluate (1-14)
|
| 34 |
+
selected_subjects (list): List of specific subjects to evaluate
|
| 35 |
num_shots (int): Number of few-shot examples (0-5)
|
| 36 |
all_questions (bool): Whether to evaluate all questions per subject
|
| 37 |
num_questions (int): Number of examples per subject (1-100 or all)
|
|
|
|
| 39 |
"""
|
| 40 |
try:
|
| 41 |
# Convert parameters if needed
|
| 42 |
+
if subject_selection_mode == "all":
|
| 43 |
num_subjects = -1
|
| 44 |
+
selected_subjects = []
|
| 45 |
+
elif subject_selection_mode == "specific":
|
| 46 |
+
num_subjects = len(selected_subjects) if selected_subjects else -1
|
| 47 |
|
| 48 |
if all_questions:
|
| 49 |
num_questions = -1
|
|
|
|
| 54 |
model_name,
|
| 55 |
num_subjects=num_subjects,
|
| 56 |
num_questions=num_questions,
|
| 57 |
+
num_shots=num_shots,
|
| 58 |
+
specific_subjects=selected_subjects if subject_selection_mode == "specific" else None
|
| 59 |
)
|
| 60 |
elapsed_time = time.time() - start_time
|
| 61 |
|
|
|
|
| 136 |
h1 {
|
| 137 |
text-align: center;
|
| 138 |
}
|
| 139 |
+
.section-spacing {
|
| 140 |
+
margin-top: 30px;
|
| 141 |
+
margin-bottom: 30px;
|
| 142 |
+
}
|
| 143 |
+
.config-box {
|
| 144 |
+
border: 1px solid #ddd;
|
| 145 |
+
border-radius: 8px;
|
| 146 |
+
padding: 15px;
|
| 147 |
+
margin: 10px;
|
| 148 |
+
background-color: #f9f9f9;
|
| 149 |
+
}
|
| 150 |
""") as demo:
|
| 151 |
gr.Markdown("# Head-to-Head Model Evaluation Comparator")
|
| 152 |
gr.Markdown("""
|
|
|
|
| 158 |
""")
|
| 159 |
|
| 160 |
# Dataset Selection Section
|
| 161 |
+
gr.Markdown("## (A) Select Dataset for Evaluation", elem_classes=["section-spacing"])
|
| 162 |
|
| 163 |
with gr.Row():
|
| 164 |
dataset_dropdown = gr.Dropdown(
|
|
|
|
| 181 |
gr.Markdown(" ")
|
| 182 |
gr.Markdown(" ")
|
| 183 |
|
| 184 |
+
# Add more spacing between sections
|
| 185 |
+
gr.Markdown(" ", elem_classes=["section-spacing"])
|
| 186 |
+
gr.Markdown(" ", elem_classes=["section-spacing"])
|
| 187 |
+
|
| 188 |
# MMLU Config Container - Initially hidden until dataset is selected
|
| 189 |
with gr.Column(visible=False) as mmlu_config_container:
|
| 190 |
+
gr.Markdown("## (B) Select Dataset Configuration Options", elem_classes=["section-spacing"])
|
| 191 |
|
| 192 |
+
# Add more spacing
|
| 193 |
+
gr.Markdown(" ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
with gr.Row():
|
| 196 |
+
# Left column for subject selection
|
| 197 |
+
with gr.Column(scale=1):
|
| 198 |
+
with gr.Box(elem_classes=["config-box"]):
|
| 199 |
+
gr.Markdown("### Choose Subjects")
|
| 200 |
+
|
| 201 |
+
subject_selection_mode = gr.Radio(
|
| 202 |
+
choices=["Evaluate All Subjects", "Choose Number of Subjects", "Specify which Subjects to Evaluate"],
|
| 203 |
+
value="Evaluate All Subjects",
|
| 204 |
+
label="Subject Selection Mode"
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Subject number slider - initially hidden, shown when "Choose Number of Subjects" is selected
|
| 208 |
+
with gr.Column(visible=False) as num_subjects_container:
|
| 209 |
+
num_subjects_slider = gr.Slider(
|
| 210 |
+
minimum=1,
|
| 211 |
+
maximum=14,
|
| 212 |
+
value=14,
|
| 213 |
+
step=1,
|
| 214 |
+
label="Number of Subjects",
|
| 215 |
+
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order."
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Subject checkboxes - initially hidden, shown when "Specify which Subjects to Evaluate" is selected
|
| 219 |
+
with gr.Column(visible=False) as specific_subjects_container:
|
| 220 |
+
# We'll populate this with checkboxes for each subject
|
| 221 |
+
# The actual subjects will come from the dataset preview
|
| 222 |
+
specific_subjects = gr.CheckboxGroup(
|
| 223 |
+
choices=[
|
| 224 |
+
"Biology (n=717)",
|
| 225 |
+
"Chemistry (n=500)",
|
| 226 |
+
"Physics (n=650)",
|
| 227 |
+
"Mathematics (n=800)",
|
| 228 |
+
"Computer Science (n=450)",
|
| 229 |
+
"History (n=300)",
|
| 230 |
+
"Literature (n=250)"
|
| 231 |
+
],
|
| 232 |
+
label="Select Specific Subjects",
|
| 233 |
+
info="Select which specific subjects to evaluate"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Right column for few-shot examples
|
| 237 |
+
with gr.Column(scale=1):
|
| 238 |
+
with gr.Box(elem_classes=["config-box"]):
|
| 239 |
+
gr.Markdown("### Few-shot Configuration")
|
| 240 |
+
|
| 241 |
+
num_shots_slider = gr.Slider(
|
| 242 |
+
minimum=0,
|
| 243 |
+
maximum=5,
|
| 244 |
+
value=5,
|
| 245 |
+
step=1,
|
| 246 |
+
label="Number of Few-shot Examples",
|
| 247 |
+
info="Number of examples to use for few-shot learning (0-5)."
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# Add spacing
|
| 251 |
+
gr.Markdown(" ")
|
| 252 |
|
| 253 |
with gr.Row():
|
| 254 |
all_questions_checkbox = gr.Checkbox(
|
|
|
|
| 351 |
outputs=[preview_visibility, dataset_preview_container, preview_output, preview_toggle]
|
| 352 |
)
|
| 353 |
|
| 354 |
+
# Function to update UI based on subject selection mode
|
| 355 |
+
def update_subject_selection_ui(mode):
|
| 356 |
+
if mode == "Evaluate All Subjects":
|
| 357 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 358 |
+
elif mode == "Choose Number of Subjects":
|
| 359 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 360 |
+
else: # "Specify which Subjects to Evaluate"
|
| 361 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 362 |
|
| 363 |
+
# Connect subject selection mode to UI updates
|
| 364 |
+
subject_selection_mode.change(
|
| 365 |
+
fn=update_subject_selection_ui,
|
| 366 |
+
inputs=[subject_selection_mode],
|
| 367 |
+
outputs=[num_subjects_container, specific_subjects_container]
|
| 368 |
)
|
| 369 |
|
| 370 |
# Update interface based on all_questions checkbox
|
|
|
|
| 380 |
outputs=[questions_container, questions_info_text]
|
| 381 |
)
|
| 382 |
|
| 383 |
+
# Function to convert subject selection mode to parameters
|
| 384 |
+
def get_subject_mode_param(mode):
|
| 385 |
+
if mode == "Evaluate All Subjects":
|
| 386 |
+
return "all"
|
| 387 |
+
elif mode == "Choose Number of Subjects":
|
| 388 |
+
return "number"
|
| 389 |
+
else: # "Specify which Subjects to Evaluate"
|
| 390 |
+
return "specific"
|
| 391 |
+
|
| 392 |
+
# Function to extract subject names from checkboxes
|
| 393 |
+
def get_subject_names(selected_subjects):
|
| 394 |
+
# Extract just the subject name without the count
|
| 395 |
+
return [subject.split(" (")[0] for subject in selected_subjects]
|
| 396 |
+
|
| 397 |
# Function to disable UI components during evaluation
|
| 398 |
def start_evaluation(state):
|
| 399 |
if state["running"]:
|
|
|
|
| 416 |
|
| 417 |
return [
|
| 418 |
state,
|
| 419 |
+
gr.update(interactive=False), # subject_selection_mode
|
| 420 |
gr.update(interactive=False), # num_subjects_slider
|
| 421 |
+
gr.update(interactive=False), # specific_subjects
|
| 422 |
gr.update(interactive=False), # num_shots_slider
|
| 423 |
gr.update(interactive=False), # all_questions_checkbox
|
| 424 |
gr.update(interactive=False), # num_questions_slider
|
|
|
|
| 441 |
state["running"] = False
|
| 442 |
return [
|
| 443 |
state,
|
| 444 |
+
gr.update(interactive=True), # subject_selection_mode
|
| 445 |
gr.update(interactive=True), # num_subjects_slider
|
| 446 |
+
gr.update(interactive=True), # specific_subjects
|
| 447 |
gr.update(interactive=True), # num_shots_slider
|
| 448 |
gr.update(interactive=True), # all_questions_checkbox
|
| 449 |
gr.update(interactive=True), # num_questions_slider
|
|
|
|
| 460 |
inputs=[evaluation_state],
|
| 461 |
outputs=[
|
| 462 |
evaluation_state,
|
| 463 |
+
subject_selection_mode,
|
| 464 |
num_subjects_slider,
|
| 465 |
+
specific_subjects,
|
| 466 |
num_shots_slider,
|
| 467 |
all_questions_checkbox,
|
| 468 |
num_questions_slider,
|
|
|
|
| 473 |
results_table_container
|
| 474 |
]
|
| 475 |
).then(
|
| 476 |
+
fn=lambda mode, num, subjects, shots, all_q, num_q:
|
| 477 |
+
run_mmlu_evaluation(
|
| 478 |
+
get_subject_mode_param(mode),
|
| 479 |
+
num,
|
| 480 |
+
get_subject_names(subjects),
|
| 481 |
+
shots,
|
| 482 |
+
all_q,
|
| 483 |
+
num_q
|
| 484 |
+
),
|
| 485 |
inputs=[
|
| 486 |
+
subject_selection_mode,
|
| 487 |
num_subjects_slider,
|
| 488 |
+
specific_subjects,
|
| 489 |
num_shots_slider,
|
| 490 |
all_questions_checkbox,
|
| 491 |
num_questions_slider
|
|
|
|
| 495 |
results_table,
|
| 496 |
eval_mmlu_button,
|
| 497 |
cancel_mmlu_button,
|
| 498 |
+
subject_selection_mode,
|
| 499 |
num_subjects_slider,
|
| 500 |
num_shots_slider,
|
| 501 |
all_questions_checkbox,
|
|
|
|
| 514 |
inputs=[evaluation_state],
|
| 515 |
outputs=[
|
| 516 |
evaluation_state,
|
| 517 |
+
subject_selection_mode,
|
| 518 |
num_subjects_slider,
|
| 519 |
+
specific_subjects,
|
| 520 |
num_shots_slider,
|
| 521 |
all_questions_checkbox,
|
| 522 |
num_questions_slider,
|