Spaces:
Sleeping
Sleeping
Create run_evaluation.py
Browse files- run_evaluation.py +156 -0
run_evaluation.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import traceback
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
+
from mmlu_pro_eval_adapted import evaluate_mmlu_pro
|
| 7 |
+
from configs.dataset_config import get_subject_mode_param, get_subject_names
|
| 8 |
+
|
| 9 |
+
@spaces.GPU(duration=240)
|
| 10 |
+
def run_mmlu_evaluation(subject_selection_mode, num_subjects, selected_subjects,
|
| 11 |
+
all_questions, num_questions, model_configs, progress=gr.Progress()):
|
| 12 |
+
"""
|
| 13 |
+
Runs the MMLU evaluation with the specified parameters.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
subject_selection_mode (str): Mode of subject selection ("all", "number", or "specific")
|
| 17 |
+
num_subjects (int): Number of subjects to evaluate (1-14)
|
| 18 |
+
selected_subjects (list): List of specific subjects to evaluate
|
| 19 |
+
all_questions (bool): Whether to evaluate all questions per subject
|
| 20 |
+
num_questions (int): Number of examples per subject (1-100 or all)
|
| 21 |
+
model_configs (dict): Configuration for both models
|
| 22 |
+
progress (gr.Progress): Progress indicator
|
| 23 |
+
"""
|
| 24 |
+
try:
|
| 25 |
+
# Convert parameters if needed
|
| 26 |
+
if subject_selection_mode == "all":
|
| 27 |
+
num_subjects = -1
|
| 28 |
+
selected_subjects = []
|
| 29 |
+
elif subject_selection_mode == "specific":
|
| 30 |
+
num_subjects = len(selected_subjects) if selected_subjects else -1
|
| 31 |
+
|
| 32 |
+
if all_questions:
|
| 33 |
+
num_questions = -1
|
| 34 |
+
|
| 35 |
+
# Extract model configurations
|
| 36 |
+
model1_config = model_configs["model1"]
|
| 37 |
+
model2_config = model_configs["model2"]
|
| 38 |
+
|
| 39 |
+
# Run evaluation for Model 1
|
| 40 |
+
start_time_model1 = time.time()
|
| 41 |
+
model1_results = evaluate_mmlu_pro(
|
| 42 |
+
model1_config["name"],
|
| 43 |
+
num_subjects=num_subjects,
|
| 44 |
+
num_questions=num_questions,
|
| 45 |
+
num_shots=model1_config["shots"],
|
| 46 |
+
specific_subjects=selected_subjects if subject_selection_mode == "specific" else None,
|
| 47 |
+
flash_attention=model1_config["flash_attention"],
|
| 48 |
+
regex_pattern=model1_config["regex"] if model1_config["regex"] else None
|
| 49 |
+
)
|
| 50 |
+
model1_elapsed_time = time.time() - start_time_model1
|
| 51 |
+
|
| 52 |
+
# Run evaluation for Model 2
|
| 53 |
+
start_time_model2 = time.time()
|
| 54 |
+
model2_results = evaluate_mmlu_pro(
|
| 55 |
+
model2_config["name"],
|
| 56 |
+
num_subjects=num_subjects,
|
| 57 |
+
num_questions=num_questions,
|
| 58 |
+
num_shots=model2_config["shots"],
|
| 59 |
+
specific_subjects=selected_subjects if subject_selection_mode == "specific" else None,
|
| 60 |
+
flash_attention=model2_config["flash_attention"],
|
| 61 |
+
regex_pattern=model2_config["regex"] if model2_config["regex"] else None
|
| 62 |
+
)
|
| 63 |
+
model2_elapsed_time = time.time() - start_time_model2
|
| 64 |
+
|
| 65 |
+
# Format summary results
|
| 66 |
+
model1_overall_acc = model1_results["overall_accuracy"]
|
| 67 |
+
model1_min_subject, model1_min_acc = model1_results["min_accuracy_subject"]
|
| 68 |
+
model1_max_subject, model1_max_acc = model1_results["max_accuracy_subject"]
|
| 69 |
+
|
| 70 |
+
model2_overall_acc = model2_results["overall_accuracy"]
|
| 71 |
+
model2_min_subject, model2_min_acc = model2_results["min_accuracy_subject"]
|
| 72 |
+
model2_max_subject, model2_max_acc = model2_results["max_accuracy_subject"]
|
| 73 |
+
|
| 74 |
+
# Create merged results DataFrame
|
| 75 |
+
results_df1 = pd.DataFrame(model1_results["full_accuracy_table"])
|
| 76 |
+
results_df2 = pd.DataFrame(model2_results["full_accuracy_table"])
|
| 77 |
+
|
| 78 |
+
# Ensure both dataframes have the same subjects
|
| 79 |
+
subjects = sorted(set(results_df1['Subject'].tolist() + results_df2['Subject'].tolist()))
|
| 80 |
+
|
| 81 |
+
# Create comparison DataFrame
|
| 82 |
+
comparison_data = []
|
| 83 |
+
|
| 84 |
+
for subject in subjects:
|
| 85 |
+
model1_row = results_df1[results_df1['Subject'] == subject]
|
| 86 |
+
model2_row = results_df2[results_df2['Subject'] == subject]
|
| 87 |
+
|
| 88 |
+
model1_acc = model1_row['Accuracy'].iloc[0] if not model1_row.empty else 0
|
| 89 |
+
model2_acc = model2_row['Accuracy'].iloc[0] if not model2_row.empty else 0
|
| 90 |
+
|
| 91 |
+
# Calculate the difference and determine the winner
|
| 92 |
+
diff = model1_acc - model2_acc
|
| 93 |
+
winner = "Model 1" if diff > 0 else ("Model 2" if diff < 0 else "Tie")
|
| 94 |
+
|
| 95 |
+
comparison_data.append({
|
| 96 |
+
'Subject': subject,
|
| 97 |
+
'Model 1 Accuracy': model1_acc,
|
| 98 |
+
'Model 2 Accuracy': model2_acc,
|
| 99 |
+
'Difference': abs(diff),
|
| 100 |
+
'Winner': winner
|
| 101 |
+
})
|
| 102 |
+
|
| 103 |
+
# Add overall row
|
| 104 |
+
model1_total_samples = results_df1['Num_samples'].sum()
|
| 105 |
+
model1_total_correct = results_df1['Num_correct'].sum()
|
| 106 |
+
model2_total_samples = results_df2['Num_samples'].sum()
|
| 107 |
+
model2_total_correct = results_df2['Num_correct'].sum()
|
| 108 |
+
|
| 109 |
+
overall_diff = model1_overall_acc - model2_overall_acc
|
| 110 |
+
overall_winner = "Model 1" if overall_diff > 0 else ("Model 2" if overall_diff < 0 else "Tie")
|
| 111 |
+
|
| 112 |
+
comparison_data.insert(0, {
|
| 113 |
+
'Subject': '**Overall**',
|
| 114 |
+
'Model 1 Accuracy': model1_overall_acc,
|
| 115 |
+
'Model 2 Accuracy': model2_overall_acc,
|
| 116 |
+
'Difference': abs(overall_diff),
|
| 117 |
+
'Winner': overall_winner
|
| 118 |
+
})
|
| 119 |
+
|
| 120 |
+
comparison_df = pd.DataFrame(comparison_data)
|
| 121 |
+
|
| 122 |
+
# Format the report
|
| 123 |
+
report = (
|
| 124 |
+
f"### Head-to-Head Comparison Results\n\n"
|
| 125 |
+
f"#### Model 1: {model1_config['name']}\n"
|
| 126 |
+
f"* Overall Accuracy: {model1_overall_acc:.3f}\n"
|
| 127 |
+
f"* Best Performance: {model1_max_subject} ({model1_max_acc:.3f})\n"
|
| 128 |
+
f"* Worst Performance: {model1_min_subject} ({model1_min_acc:.3f})\n"
|
| 129 |
+
f"* Evaluation completed in {model1_elapsed_time:.2f} seconds\n\n"
|
| 130 |
+
f"#### Model 2: {model2_config['name']}\n"
|
| 131 |
+
f"* Overall Accuracy: {model2_overall_acc:.3f}\n"
|
| 132 |
+
f"* Best Performance: {model2_max_subject} ({model2_max_acc:.3f})\n"
|
| 133 |
+
f"* Worst Performance: {model2_min_subject} ({model2_min_acc:.3f})\n"
|
| 134 |
+
f"* Evaluation completed in {model2_elapsed_time:.2f} seconds\n\n"
|
| 135 |
+
f"#### Overall Winner: {overall_winner}\n"
|
| 136 |
+
f"* Margin: {abs(overall_diff):.3f}\n"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Return values that re-enable UI components after completion
|
| 140 |
+
return {
|
| 141 |
+
'report': report,
|
| 142 |
+
'comparison_df': comparison_df,
|
| 143 |
+
'success': True
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
# Handle errors gracefully
|
| 148 |
+
error_trace = traceback.format_exc()
|
| 149 |
+
error_message = f"### Error during evaluation\n```\n{error_trace}\n```"
|
| 150 |
+
|
| 151 |
+
# Return error information
|
| 152 |
+
return {
|
| 153 |
+
'report': error_message,
|
| 154 |
+
'comparison_df': None,
|
| 155 |
+
'success': False
|
| 156 |
+
}
|