Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import spaces
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import numpy as np
|
| 9 |
import random
|
|
|
|
| 10 |
|
| 11 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
| 12 |
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
|
@@ -28,8 +29,31 @@ MOD_VALUE = 32
|
|
| 28 |
DEFAULT_H_SLIDER_VALUE = 384 # 512
|
| 29 |
DEFAULT_W_SLIDER_VALUE = 640 # 896
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
MAX_SEED = np.iinfo(np.int32).max
|
| 34 |
|
| 35 |
FIXED_FPS = 24
|
|
@@ -62,7 +86,7 @@ def generate_video(prompt, height, width,
|
|
| 62 |
|
| 63 |
This function takes a text prompt and generates a video based on the provided
|
| 64 |
prompt and parameters. It uses the Wan 2.1 1.3B Text-to-Video model with CausVid LoRA
|
| 65 |
-
for fast generation in
|
| 66 |
|
| 67 |
Args:
|
| 68 |
prompt (str): Text prompt describing the desired video content.
|
|
@@ -97,7 +121,14 @@ def generate_video(prompt, height, width,
|
|
| 97 |
- Generation time varies based on steps and duration (see get_duration function)
|
| 98 |
"""
|
| 99 |
if not prompt or prompt.strip() == "":
|
| 100 |
-
raise gr.Error("Please enter a text prompt.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 103 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
|
@@ -120,21 +151,45 @@ def generate_video(prompt, height, width,
|
|
| 120 |
return video_path, current_seed
|
| 121 |
|
| 122 |
with gr.Blocks() as demo:
|
| 123 |
-
gr.Markdown("# InstaVideo")
|
| 124 |
-
gr.Markdown("This
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
with gr.Row():
|
| 126 |
with gr.Column():
|
| 127 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
|
| 128 |
-
duration_seconds_input = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
with gr.Accordion("Advanced Settings", open=False):
|
| 131 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
| 132 |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
| 133 |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
| 134 |
with gr.Row():
|
| 135 |
-
height_input = gr.Slider(
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
|
| 139 |
|
| 140 |
generate_button = gr.Button("Generate Video", variant="primary")
|
|
@@ -148,13 +203,26 @@ with gr.Blocks() as demo:
|
|
| 148 |
]
|
| 149 |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
gr.Examples(
|
| 152 |
-
examples=
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
inputs=[prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
|
| 158 |
)
|
| 159 |
|
| 160 |
if __name__ == "__main__":
|
|
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import numpy as np
|
| 9 |
import random
|
| 10 |
+
import os
|
| 11 |
|
| 12 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
| 13 |
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
|
|
|
| 29 |
DEFAULT_H_SLIDER_VALUE = 384 # 512
|
| 30 |
DEFAULT_W_SLIDER_VALUE = 640 # 896
|
| 31 |
|
| 32 |
+
# Environment variable check
|
| 33 |
+
IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "False") == "True"
|
| 34 |
+
|
| 35 |
+
# Original limits
|
| 36 |
+
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280
|
| 37 |
+
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280
|
| 38 |
+
ORIGINAL_MAX_DURATION = round(81/24, 1) # MAX_FRAMES_MODEL/FIXED_FPS
|
| 39 |
+
|
| 40 |
+
# Limited space constants
|
| 41 |
+
LIMITED_MAX_RESOLUTION = 640
|
| 42 |
+
LIMITED_MAX_DURATION = 2.0
|
| 43 |
+
LIMITED_MAX_STEPS = 3
|
| 44 |
+
|
| 45 |
+
# Set limits based on environment variable
|
| 46 |
+
if IS_ORIGINAL_SPACE:
|
| 47 |
+
SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
|
| 48 |
+
SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
|
| 49 |
+
MAX_DURATION = ORIGINAL_MAX_DURATION
|
| 50 |
+
MAX_STEPS = 8
|
| 51 |
+
else:
|
| 52 |
+
SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
|
| 53 |
+
SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
|
| 54 |
+
MAX_DURATION = LIMITED_MAX_DURATION
|
| 55 |
+
MAX_STEPS = LIMITED_MAX_STEPS
|
| 56 |
+
|
| 57 |
MAX_SEED = np.iinfo(np.int32).max
|
| 58 |
|
| 59 |
FIXED_FPS = 24
|
|
|
|
| 86 |
|
| 87 |
This function takes a text prompt and generates a video based on the provided
|
| 88 |
prompt and parameters. It uses the Wan 2.1 1.3B Text-to-Video model with CausVid LoRA
|
| 89 |
+
for fast generation in 3-8 steps.
|
| 90 |
|
| 91 |
Args:
|
| 92 |
prompt (str): Text prompt describing the desired video content.
|
|
|
|
| 121 |
- Generation time varies based on steps and duration (see get_duration function)
|
| 122 |
"""
|
| 123 |
if not prompt or prompt.strip() == "":
|
| 124 |
+
raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.")
|
| 125 |
+
|
| 126 |
+
# Apply limits based on environment variable
|
| 127 |
+
if not IS_ORIGINAL_SPACE:
|
| 128 |
+
height = min(height, LIMITED_MAX_RESOLUTION)
|
| 129 |
+
width = min(width, LIMITED_MAX_RESOLUTION)
|
| 130 |
+
duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION)
|
| 131 |
+
steps = min(steps, LIMITED_MAX_STEPS)
|
| 132 |
|
| 133 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 134 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
|
|
|
| 151 |
return video_path, current_seed
|
| 152 |
|
| 153 |
with gr.Blocks() as demo:
|
| 154 |
+
gr.Markdown("# ⚡ InstaVideo")
|
| 155 |
+
gr.Markdown("This Gradio space is forked by [wan2-1-fast from multimodalart](https://huggingface.co/spaces/multimodalart/wan2-1-fast), and is powered by the Wan CausVid LoRA [from Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors).")
|
| 156 |
+
|
| 157 |
+
# Add notice for limited spaces
|
| 158 |
+
if not IS_ORIGINAL_SPACE:
|
| 159 |
+
gr.Markdown("This free public demo limits the resolution to 640x640, duration to 2s, and inference steps to 3. For full capabilities please duplicate this space.")
|
| 160 |
+
|
| 161 |
with gr.Row():
|
| 162 |
with gr.Column():
|
| 163 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
|
| 164 |
+
duration_seconds_input = gr.Slider(
|
| 165 |
+
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
|
| 166 |
+
maximum=MAX_DURATION,
|
| 167 |
+
step=0.1,
|
| 168 |
+
value=2,
|
| 169 |
+
label="Duration (seconds)",
|
| 170 |
+
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
| 171 |
+
)
|
| 172 |
|
| 173 |
with gr.Accordion("Advanced Settings", open=False):
|
| 174 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
| 175 |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
| 176 |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
| 177 |
with gr.Row():
|
| 178 |
+
height_input = gr.Slider(
|
| 179 |
+
minimum=SLIDER_MIN_H,
|
| 180 |
+
maximum=SLIDER_MAX_H,
|
| 181 |
+
step=MOD_VALUE,
|
| 182 |
+
value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H),
|
| 183 |
+
label=f"Output Height (multiple of {MOD_VALUE})"
|
| 184 |
+
)
|
| 185 |
+
width_input = gr.Slider(
|
| 186 |
+
minimum=SLIDER_MIN_W,
|
| 187 |
+
maximum=SLIDER_MAX_W,
|
| 188 |
+
step=MOD_VALUE,
|
| 189 |
+
value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W),
|
| 190 |
+
label=f"Output Width (multiple of {MOD_VALUE})"
|
| 191 |
+
)
|
| 192 |
+
steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=3, label="Inference Steps")
|
| 193 |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
|
| 194 |
|
| 195 |
generate_button = gr.Button("Generate Video", variant="primary")
|
|
|
|
| 203 |
]
|
| 204 |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
| 205 |
|
| 206 |
+
# Adjust examples based on space limits
|
| 207 |
+
example_configs = [
|
| 208 |
+
["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512],
|
| 209 |
+
["a serene ocean wave crashing on a sandy beach at sunset", 448, 832],
|
| 210 |
+
["a field of flowers swaying in the wind, spring morning light", 512, 896],
|
| 211 |
+
]
|
| 212 |
+
|
| 213 |
+
if not IS_ORIGINAL_SPACE:
|
| 214 |
+
# Limit example resolutions for limited spaces
|
| 215 |
+
example_configs = [
|
| 216 |
+
[example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)]
|
| 217 |
+
for example in example_configs
|
| 218 |
+
]
|
| 219 |
+
|
| 220 |
gr.Examples(
|
| 221 |
+
examples=example_configs,
|
| 222 |
+
inputs=[prompt_input, height_input, width_input],
|
| 223 |
+
outputs=[video_output, seed_input],
|
| 224 |
+
fn=generate_video,
|
| 225 |
+
cache_examples="lazy"
|
|
|
|
| 226 |
)
|
| 227 |
|
| 228 |
if __name__ == "__main__":
|