Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import subprocess
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
# =========================================
|
| 9 |
+
# 1. Define Hugging Face weights and paths
|
| 10 |
+
# =========================================
|
| 11 |
+
|
| 12 |
+
HF_DATASET_URL = "https://huggingface.co/datasets/roll-ai/FloVD-weights/resolve/main/ckpt"
|
| 13 |
+
WEIGHT_FILES = {
|
| 14 |
+
"FVSM/FloVD_FVSM_Controlnet.pt": "FVSM/FloVD_FVSM_Controlnet.pt",
|
| 15 |
+
"OMSM/selected_blocks.safetensors": "OMSM/selected_blocks.safetensors",
|
| 16 |
+
"OMSM/pytorch_lora_weights.safetensors": "OMSM/pytorch_lora_weights.safetensors",
|
| 17 |
+
"others/depth_anything_v2_metric_hypersim_vitb.pth": "others/depth_anything_v2_metric_hypersim_vitb.pth"
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
def download_weights():
|
| 21 |
+
print("π Downloading model weights...")
|
| 22 |
+
for rel_path in WEIGHT_FILES.values():
|
| 23 |
+
save_path = Path("ckpt") / rel_path
|
| 24 |
+
if not save_path.exists():
|
| 25 |
+
save_path.parent.mkdir(parents=True, exist_ok=True)
|
| 26 |
+
url = f"{HF_DATASET_URL}/{rel_path}"
|
| 27 |
+
print(f"π₯ Downloading {url} β {save_path}")
|
| 28 |
+
subprocess.run(["wget", "-q", "-O", str(save_path), url], check=True)
|
| 29 |
+
else:
|
| 30 |
+
print(f"β
Already exists: {save_path}")
|
| 31 |
+
|
| 32 |
+
download_weights()
|
| 33 |
+
|
| 34 |
+
# =========================================
|
| 35 |
+
# 2. Import and load FloVD pipeline
|
| 36 |
+
# =========================================
|
| 37 |
+
|
| 38 |
+
from inference.flovd_demo import load_pipeline, generate_video
|
| 39 |
+
|
| 40 |
+
pipeline = load_pipeline(
|
| 41 |
+
fvsm_path="ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
|
| 42 |
+
omsm_path="ckpt/OMSM",
|
| 43 |
+
depth_path="ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth",
|
| 44 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# =========================================
|
| 48 |
+
# 3. Inference Function
|
| 49 |
+
# =========================================
|
| 50 |
+
|
| 51 |
+
def run_inference(image: Image.Image, prompt: str, cam_traj_path: str):
|
| 52 |
+
print("π Running inference...")
|
| 53 |
+
output_path = generate_video(
|
| 54 |
+
image=image,
|
| 55 |
+
prompt=prompt,
|
| 56 |
+
cam_traj=cam_traj_path,
|
| 57 |
+
pipeline=pipeline,
|
| 58 |
+
num_frames=49,
|
| 59 |
+
fps=16,
|
| 60 |
+
controlnet_guidance_end=0.4,
|
| 61 |
+
flow_scale=(60, 36)
|
| 62 |
+
)
|
| 63 |
+
return output_path
|
| 64 |
+
|
| 65 |
+
# =========================================
|
| 66 |
+
# 4. Gradio UI
|
| 67 |
+
# =========================================
|
| 68 |
+
|
| 69 |
+
example_image = "assets/manual_poses/example_image.jpg"
|
| 70 |
+
example_cam = "assets/cam_trajectory/dolly_zoom.txt"
|
| 71 |
+
|
| 72 |
+
demo = gr.Interface(
|
| 73 |
+
fn=run_inference,
|
| 74 |
+
inputs=[
|
| 75 |
+
gr.Image(label="Input Image", type="pil"),
|
| 76 |
+
gr.Textbox(label="Text Prompt", value="A cinematic dolly zoom shot of a futuristic cityscape"),
|
| 77 |
+
gr.Textbox(label="Camera Trajectory File Path", value=example_cam),
|
| 78 |
+
],
|
| 79 |
+
outputs=gr.Video(label="Generated Video"),
|
| 80 |
+
title="FloVD-CogVideoX π ",
|
| 81 |
+
description="Upload an image, enter a text prompt and a camera trajectory file path to generate a controlled video using CogVideoX + optical flow.",
|
| 82 |
+
examples=[[example_image, "A beautiful sunrise over a mountain range", example_cam]]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
if __name__ == "__main__":
|
| 86 |
+
demo.launch()
|