File size: 12,023 Bytes
f9cf36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c91c0
 
 
 
 
 
 
 
 
 
 
 
f9cf36d
 
 
 
 
 
16c91c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9cf36d
16c91c0
 
 
 
 
 
 
 
 
 
 
 
 
f9cf36d
 
16c91c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9cf36d
 
16c91c0
 
 
 
 
 
f9cf36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c91c0
f9cf36d
16c91c0
 
 
 
 
 
 
 
f9cf36d
 
 
16c91c0
f9cf36d
 
 
16c91c0
 
f9cf36d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import pandas as pd
from typing import Dict, Any, List, Optional
from comparison import AnswerComparator
import phoenix as px
from phoenix.trace import SpanEvaluations


class GAIAPhoenixEvaluator:
    """Phoenix evaluator for GAIA dataset ground truth comparison."""

    def __init__(self, metadata_path: str = "data/metadata.jsonl"):
        self.comparator = AnswerComparator(metadata_path)
        self.eval_name = "gaia_ground_truth"

    def evaluate_spans(self, spans_df: pd.DataFrame) -> List[SpanEvaluations]:
        """Evaluate spans and return Phoenix SpanEvaluations."""
        evaluations = []

        for _, span in spans_df.iterrows():
            # Extract task_id and answer from span
            task_id = self._extract_task_id(span)
            predicted_answer = self._extract_predicted_answer(span)
            span_id = span.get("context.span_id")

            if task_id and predicted_answer is not None and span_id:
                evaluation = self.comparator.evaluate_answer(task_id, predicted_answer)

                # Create evaluation record for Phoenix
                eval_record = {
                    "span_id": span_id,
                    "score": 1.0 if evaluation["exact_match"] else evaluation["similarity_score"],
                    "label": "correct" if evaluation["exact_match"] else "incorrect",
                    "explanation": self._create_explanation(evaluation),
                    "task_id": task_id,
                    "predicted_answer": evaluation["predicted_answer"],
                    "ground_truth": evaluation["actual_answer"],
                    "exact_match": evaluation["exact_match"],
                    "similarity_score": evaluation["similarity_score"],
                    "contains_answer": evaluation["contains_answer"]
                }

                evaluations.append(eval_record)

        if evaluations:
            # Create SpanEvaluations object
            eval_df = pd.DataFrame(evaluations)
            return [SpanEvaluations(eval_name=self.eval_name, dataframe=eval_df)]

        return []

    def _extract_task_id(self, span) -> Optional[str]:
        """Extract task_id from span data."""
        # Try span attributes first
        attributes = span.get("attributes", {})
        if isinstance(attributes, dict):
            if "task_id" in attributes:
                return attributes["task_id"]

        # Try input data
        input_data = span.get("input", {})
        if isinstance(input_data, dict):
            if "task_id" in input_data:
                return input_data["task_id"]

        # Try to extract from input value if it's a string
        input_value = span.get("input.value", "")
        if isinstance(input_value, str):
            # Look for UUID pattern in input
            import re
            uuid_pattern = r'[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}'
            match = re.search(uuid_pattern, input_value)
            if match:
                return match.group(0)

        # Try span name
        span_name = span.get("name", "")
        if isinstance(span_name, str):
            import re
            uuid_pattern = r'[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}'
            match = re.search(uuid_pattern, span_name)
            if match:
                return match.group(0)

        return None

    def _extract_predicted_answer(self, span) -> Optional[str]:
        """Extract predicted answer from span output."""
        # Try different output fields
        output_fields = ["output.value", "output", "response", "result"]

        for field in output_fields:
            value = span.get(field)
            if value is not None:
                return str(value)

        return None

    def _create_explanation(self, evaluation: Dict[str, Any]) -> str:
        """Create human-readable explanation of the evaluation."""
        predicted = evaluation["predicted_answer"]
        actual = evaluation["actual_answer"]
        exact_match = evaluation["exact_match"]
        similarity = evaluation["similarity_score"]
        contains = evaluation["contains_answer"]

        if actual is None:
            return "❓ No ground truth available for comparison"

        explanation = f"Predicted: '{predicted}' | Ground Truth: '{actual}' | "

        if exact_match:
            explanation += "βœ… Exact match"
        elif contains:
            explanation += f"⚠️ Contains correct answer (similarity: {similarity:.3f})"
        else:
            explanation += f"❌ Incorrect (similarity: {similarity:.3f})"

        return explanation


def add_gaia_evaluations_to_phoenix(spans_df: pd.DataFrame, metadata_path: str = "data/metadata.jsonl") -> List[SpanEvaluations]:
    """Add GAIA evaluation results to Phoenix spans."""
    evaluator = GAIAPhoenixEvaluator(metadata_path)
    return evaluator.evaluate_spans(spans_df)


def log_evaluations_to_phoenix(evaluations_df: pd.DataFrame, session_id: Optional[str] = None) -> Optional[pd.DataFrame]:
    """Log evaluation results directly to Phoenix."""
    try:
        client = px.Client()

        # Get current spans to match evaluations to span_ids
        spans_df = client.get_spans_dataframe()

        if spans_df is None or spans_df.empty:
            print("No spans found to attach evaluations to")
            return None

        # Debug: Show available columns
        print(f"πŸ“Š Available span columns: {list(spans_df.columns)}")

        # Get possible input/output column names
        input_columns = [col for col in spans_df.columns if 'input' in col.lower()]
        output_columns = [col for col in spans_df.columns if 'output' in col.lower()]
        name_columns = [col for col in spans_df.columns if 'name' in col.lower()]

        print(f"πŸ“Š Input columns found: {input_columns}")
        print(f"πŸ“Š Output columns found: {output_columns}")
        print(f"πŸ“Š Name columns found: {name_columns}")

        # Create evaluation records for Phoenix
        evaluation_records = []
        spans_with_evals = []

        for _, eval_row in evaluations_df.iterrows():
            task_id = eval_row["task_id"]
            matching_spans = pd.DataFrame()

            # Try different strategies to find matching spans

            # Strategy 1: Search in all string columns for task_id
            for col in spans_df.columns:
                if spans_df[col].dtype == 'object':  # String-like columns
                    try:
                        matches = spans_df[
                            spans_df[col].astype(str).str.contains(task_id, na=False, case=False)
                        ]
                        if len(matches) > 0:
                            matching_spans = matches
                            print(f"βœ… Found match for {task_id} in column '{col}'")
                            break
                    except Exception as e:
                        continue

            # Strategy 2: If no matches found, try searching in input columns specifically
            if len(matching_spans) == 0 and input_columns:
                for input_col in input_columns:
                    try:
                        matches = spans_df[
                            spans_df[input_col].astype(str).str.contains(task_id, na=False, case=False)
                        ]
                        if len(matches) > 0:
                            matching_spans = matches
                            print(f"βœ… Found match for {task_id} in input column '{input_col}'")
                            break
                    except Exception as e:
                        continue

            # Strategy 3: If still no matches, try with partial task_id (last 8 characters)
            if len(matching_spans) == 0:
                short_task_id = task_id[-8:] if len(task_id) > 8 else task_id
                for col in spans_df.columns:
                    if spans_df[col].dtype == 'object':
                        try:
                            matches = spans_df[
                                spans_df[col].astype(str).str.contains(short_task_id, na=False, case=False)
                            ]
                            if len(matches) > 0:
                                matching_spans = matches
                                print(f"βœ… Found match for {task_id} using short ID in column '{col}'")
                                break
                        except Exception as e:
                            continue

            if len(matching_spans) > 0:
                span_id = matching_spans.iloc[0].get('context.span_id') or matching_spans.iloc[0].get('span_id')

                if span_id:
                    # Create evaluation record in Phoenix format
                    evaluation_record = {
                        "span_id": span_id,
                        "name": "gaia_ground_truth",
                        "score": eval_row["similarity_score"],
                        "label": "correct" if bool(eval_row["exact_match"]) else "incorrect",
                        "explanation": f"Predicted: '{eval_row['predicted_answer']}' | Ground Truth: '{eval_row['actual_answer']}' | Similarity: {eval_row['similarity_score']:.3f} | Exact Match: {eval_row['exact_match']}",
                        "annotator_kind": "HUMAN",
                        "metadata": {
                            "task_id": task_id,
                            "exact_match": bool(eval_row["exact_match"]),
                            "similarity_score": float(eval_row["similarity_score"]),
                            "contains_answer": bool(eval_row["contains_answer"]),
                            "predicted_answer": str(eval_row["predicted_answer"]),
                            "ground_truth": str(eval_row["actual_answer"])
                        }
                    }

                    evaluation_records.append(evaluation_record)
                    spans_with_evals.append(span_id)
                else:
                    print(f"⚠️ No span_id found for matching span with task {task_id}")
            else:
                print(f"⚠️ No matching span found for task {task_id}")

        if evaluation_records:
            # Convert to DataFrame for Phoenix
            eval_df = pd.DataFrame(evaluation_records)

            # Create SpanEvaluations object
            span_evaluations = SpanEvaluations(
                eval_name="gaia_ground_truth",
                dataframe=eval_df
            )

            # Log evaluations to Phoenix
            try:
                # Try the newer Phoenix API
                px.log_evaluations(span_evaluations)
                print(f"βœ… Successfully logged {len(evaluation_records)} evaluations to Phoenix using px.log_evaluations")
            except AttributeError:
                try:
                    # Fallback for older Phoenix versions
                    client.log_evaluations(span_evaluations)
                    print(f"βœ… Successfully logged {len(evaluation_records)} evaluations to Phoenix using client.log_evaluations")
                except Exception as e:
                    print(f"⚠️ Could not log evaluations using either method: {e}")
                    # Still return the DataFrame so we know what would have been logged
                    print("Evaluation records created but not logged to Phoenix")

            return eval_df
        else:
            print("⚠️ No matching spans found for any evaluations")
            if spans_df is not None:
                print(f"Available spans: {len(spans_df)}")
                if len(spans_df) > 0:
                    available_cols = [col for col in spans_df.columns if spans_df[col].dtype == 'object'][:5]
                    print(f"Sample searchable columns: {available_cols}")
            return None

    except Exception as e:
        print(f"❌ Could not log evaluations to Phoenix: {e}")
        import traceback
        traceback.print_exc()
        return None