Romain Fayoux
commited on
Commit
Β·
16c91c0
1
Parent(s):
f9cf36d
Trying to debug phoenix evals
Browse files- debug_spans.py +77 -0
- phoenix_evaluator.py +95 -36
- test_phoenix_simple.py +11 -4
debug_spans.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Debug script to see Phoenix spans column structure.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import sys
|
| 7 |
+
import os
|
| 8 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 9 |
+
|
| 10 |
+
import phoenix as px
|
| 11 |
+
import pandas as pd
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def debug_spans_structure():
|
| 15 |
+
"""Debug the structure of Phoenix spans."""
|
| 16 |
+
print("π Debugging Phoenix Spans Structure")
|
| 17 |
+
print("=" * 50)
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
client = px.Client()
|
| 21 |
+
print("β
Phoenix connected successfully")
|
| 22 |
+
except Exception as e:
|
| 23 |
+
print(f"β Phoenix connection failed: {e}")
|
| 24 |
+
return
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
spans_df = client.get_spans_dataframe()
|
| 28 |
+
print(f"π Found {len(spans_df)} spans in Phoenix")
|
| 29 |
+
|
| 30 |
+
if len(spans_df) == 0:
|
| 31 |
+
print("β οΈ No spans found. Run your agent first to create spans.")
|
| 32 |
+
return
|
| 33 |
+
|
| 34 |
+
print(f"\nπ Available Columns ({len(spans_df.columns)} total):")
|
| 35 |
+
for i, col in enumerate(spans_df.columns):
|
| 36 |
+
print(f" {i+1:2d}. {col}")
|
| 37 |
+
|
| 38 |
+
print(f"\nπ Sample Data (first span):")
|
| 39 |
+
sample_span = spans_df.iloc[0]
|
| 40 |
+
for col in spans_df.columns:
|
| 41 |
+
value = sample_span.get(col)
|
| 42 |
+
if value is not None:
|
| 43 |
+
value_str = str(value)[:100] + "..." if len(str(value)) > 100 else str(value)
|
| 44 |
+
print(f" {col}: {value_str}")
|
| 45 |
+
|
| 46 |
+
# Look for input/output related columns
|
| 47 |
+
input_cols = [col for col in spans_df.columns if 'input' in col.lower()]
|
| 48 |
+
output_cols = [col for col in spans_df.columns if 'output' in col.lower()]
|
| 49 |
+
|
| 50 |
+
print(f"\nπ― Input-related columns: {input_cols}")
|
| 51 |
+
print(f"π― Output-related columns: {output_cols}")
|
| 52 |
+
|
| 53 |
+
# Look for span ID columns
|
| 54 |
+
id_cols = [col for col in spans_df.columns if 'id' in col.lower()]
|
| 55 |
+
print(f"π― ID-related columns: {id_cols}")
|
| 56 |
+
|
| 57 |
+
# Look for columns that might contain task IDs
|
| 58 |
+
print(f"\nπ Searching for task IDs in spans...")
|
| 59 |
+
task_id_sample = "8e867cd7-cff9-4e6c-867a-ff5ddc2550be"
|
| 60 |
+
|
| 61 |
+
for col in spans_df.columns:
|
| 62 |
+
if spans_df[col].dtype == 'object': # String-like columns
|
| 63 |
+
try:
|
| 64 |
+
matches = spans_df[spans_df[col].astype(str).str.contains(task_id_sample, na=False, case=False)]
|
| 65 |
+
if len(matches) > 0:
|
| 66 |
+
print(f" β
Found task ID in column '{col}': {len(matches)} matches")
|
| 67 |
+
except:
|
| 68 |
+
pass
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"β Error debugging spans: {e}")
|
| 72 |
+
import traceback
|
| 73 |
+
traceback.print_exc()
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
debug_spans_structure()
|
phoenix_evaluator.py
CHANGED
|
@@ -136,47 +136,100 @@ def log_evaluations_to_phoenix(evaluations_df: pd.DataFrame, session_id: Optiona
|
|
| 136 |
print("No spans found to attach evaluations to")
|
| 137 |
return None
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
# Create evaluation records for Phoenix
|
| 140 |
evaluation_records = []
|
| 141 |
spans_with_evals = []
|
| 142 |
|
| 143 |
for _, eval_row in evaluations_df.iterrows():
|
| 144 |
task_id = eval_row["task_id"]
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
if len(matching_spans) == 0:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
spans_df[
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
if len(matching_spans) > 0:
|
| 158 |
-
span_id = matching_spans.iloc[0]
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
"
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
| 175 |
}
|
| 176 |
-
}
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
if evaluation_records:
|
| 182 |
# Convert to DataFrame for Phoenix
|
|
@@ -192,19 +245,25 @@ def log_evaluations_to_phoenix(evaluations_df: pd.DataFrame, session_id: Optiona
|
|
| 192 |
try:
|
| 193 |
# Try the newer Phoenix API
|
| 194 |
px.log_evaluations(span_evaluations)
|
| 195 |
-
print(f"β
Successfully logged {len(evaluation_records)} evaluations to Phoenix")
|
| 196 |
except AttributeError:
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
return eval_df
|
| 202 |
else:
|
| 203 |
-
print("β οΈ No matching spans found for evaluations")
|
| 204 |
if spans_df is not None:
|
| 205 |
print(f"Available spans: {len(spans_df)}")
|
| 206 |
if len(spans_df) > 0:
|
| 207 |
-
|
|
|
|
| 208 |
return None
|
| 209 |
|
| 210 |
except Exception as e:
|
|
|
|
| 136 |
print("No spans found to attach evaluations to")
|
| 137 |
return None
|
| 138 |
|
| 139 |
+
# Debug: Show available columns
|
| 140 |
+
print(f"π Available span columns: {list(spans_df.columns)}")
|
| 141 |
+
|
| 142 |
+
# Get possible input/output column names
|
| 143 |
+
input_columns = [col for col in spans_df.columns if 'input' in col.lower()]
|
| 144 |
+
output_columns = [col for col in spans_df.columns if 'output' in col.lower()]
|
| 145 |
+
name_columns = [col for col in spans_df.columns if 'name' in col.lower()]
|
| 146 |
+
|
| 147 |
+
print(f"π Input columns found: {input_columns}")
|
| 148 |
+
print(f"π Output columns found: {output_columns}")
|
| 149 |
+
print(f"π Name columns found: {name_columns}")
|
| 150 |
+
|
| 151 |
# Create evaluation records for Phoenix
|
| 152 |
evaluation_records = []
|
| 153 |
spans_with_evals = []
|
| 154 |
|
| 155 |
for _, eval_row in evaluations_df.iterrows():
|
| 156 |
task_id = eval_row["task_id"]
|
| 157 |
+
matching_spans = pd.DataFrame()
|
| 158 |
+
|
| 159 |
+
# Try different strategies to find matching spans
|
| 160 |
+
|
| 161 |
+
# Strategy 1: Search in all string columns for task_id
|
| 162 |
+
for col in spans_df.columns:
|
| 163 |
+
if spans_df[col].dtype == 'object': # String-like columns
|
| 164 |
+
try:
|
| 165 |
+
matches = spans_df[
|
| 166 |
+
spans_df[col].astype(str).str.contains(task_id, na=False, case=False)
|
| 167 |
+
]
|
| 168 |
+
if len(matches) > 0:
|
| 169 |
+
matching_spans = matches
|
| 170 |
+
print(f"β
Found match for {task_id} in column '{col}'")
|
| 171 |
+
break
|
| 172 |
+
except Exception as e:
|
| 173 |
+
continue
|
| 174 |
+
|
| 175 |
+
# Strategy 2: If no matches found, try searching in input columns specifically
|
| 176 |
+
if len(matching_spans) == 0 and input_columns:
|
| 177 |
+
for input_col in input_columns:
|
| 178 |
+
try:
|
| 179 |
+
matches = spans_df[
|
| 180 |
+
spans_df[input_col].astype(str).str.contains(task_id, na=False, case=False)
|
| 181 |
+
]
|
| 182 |
+
if len(matches) > 0:
|
| 183 |
+
matching_spans = matches
|
| 184 |
+
print(f"β
Found match for {task_id} in input column '{input_col}'")
|
| 185 |
+
break
|
| 186 |
+
except Exception as e:
|
| 187 |
+
continue
|
| 188 |
+
|
| 189 |
+
# Strategy 3: If still no matches, try with partial task_id (last 8 characters)
|
| 190 |
if len(matching_spans) == 0:
|
| 191 |
+
short_task_id = task_id[-8:] if len(task_id) > 8 else task_id
|
| 192 |
+
for col in spans_df.columns:
|
| 193 |
+
if spans_df[col].dtype == 'object':
|
| 194 |
+
try:
|
| 195 |
+
matches = spans_df[
|
| 196 |
+
spans_df[col].astype(str).str.contains(short_task_id, na=False, case=False)
|
| 197 |
+
]
|
| 198 |
+
if len(matches) > 0:
|
| 199 |
+
matching_spans = matches
|
| 200 |
+
print(f"β
Found match for {task_id} using short ID in column '{col}'")
|
| 201 |
+
break
|
| 202 |
+
except Exception as e:
|
| 203 |
+
continue
|
| 204 |
|
| 205 |
if len(matching_spans) > 0:
|
| 206 |
+
span_id = matching_spans.iloc[0].get('context.span_id') or matching_spans.iloc[0].get('span_id')
|
| 207 |
+
|
| 208 |
+
if span_id:
|
| 209 |
+
# Create evaluation record in Phoenix format
|
| 210 |
+
evaluation_record = {
|
| 211 |
+
"span_id": span_id,
|
| 212 |
+
"name": "gaia_ground_truth",
|
| 213 |
+
"score": eval_row["similarity_score"],
|
| 214 |
+
"label": "correct" if bool(eval_row["exact_match"]) else "incorrect",
|
| 215 |
+
"explanation": f"Predicted: '{eval_row['predicted_answer']}' | Ground Truth: '{eval_row['actual_answer']}' | Similarity: {eval_row['similarity_score']:.3f} | Exact Match: {eval_row['exact_match']}",
|
| 216 |
+
"annotator_kind": "HUMAN",
|
| 217 |
+
"metadata": {
|
| 218 |
+
"task_id": task_id,
|
| 219 |
+
"exact_match": bool(eval_row["exact_match"]),
|
| 220 |
+
"similarity_score": float(eval_row["similarity_score"]),
|
| 221 |
+
"contains_answer": bool(eval_row["contains_answer"]),
|
| 222 |
+
"predicted_answer": str(eval_row["predicted_answer"]),
|
| 223 |
+
"ground_truth": str(eval_row["actual_answer"])
|
| 224 |
+
}
|
| 225 |
}
|
|
|
|
| 226 |
|
| 227 |
+
evaluation_records.append(evaluation_record)
|
| 228 |
+
spans_with_evals.append(span_id)
|
| 229 |
+
else:
|
| 230 |
+
print(f"β οΈ No span_id found for matching span with task {task_id}")
|
| 231 |
+
else:
|
| 232 |
+
print(f"β οΈ No matching span found for task {task_id}")
|
| 233 |
|
| 234 |
if evaluation_records:
|
| 235 |
# Convert to DataFrame for Phoenix
|
|
|
|
| 245 |
try:
|
| 246 |
# Try the newer Phoenix API
|
| 247 |
px.log_evaluations(span_evaluations)
|
| 248 |
+
print(f"β
Successfully logged {len(evaluation_records)} evaluations to Phoenix using px.log_evaluations")
|
| 249 |
except AttributeError:
|
| 250 |
+
try:
|
| 251 |
+
# Fallback for older Phoenix versions
|
| 252 |
+
client.log_evaluations(span_evaluations)
|
| 253 |
+
print(f"β
Successfully logged {len(evaluation_records)} evaluations to Phoenix using client.log_evaluations")
|
| 254 |
+
except Exception as e:
|
| 255 |
+
print(f"β οΈ Could not log evaluations using either method: {e}")
|
| 256 |
+
# Still return the DataFrame so we know what would have been logged
|
| 257 |
+
print("Evaluation records created but not logged to Phoenix")
|
| 258 |
|
| 259 |
return eval_df
|
| 260 |
else:
|
| 261 |
+
print("β οΈ No matching spans found for any evaluations")
|
| 262 |
if spans_df is not None:
|
| 263 |
print(f"Available spans: {len(spans_df)}")
|
| 264 |
if len(spans_df) > 0:
|
| 265 |
+
available_cols = [col for col in spans_df.columns if spans_df[col].dtype == 'object'][:5]
|
| 266 |
+
print(f"Sample searchable columns: {available_cols}")
|
| 267 |
return None
|
| 268 |
|
| 269 |
except Exception as e:
|
test_phoenix_simple.py
CHANGED
|
@@ -61,6 +61,11 @@ def test_phoenix_logging():
|
|
| 61 |
print("β οΈ No spans found - you need to run your agent first to create spans")
|
| 62 |
return False
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
except Exception as e:
|
| 65 |
print(f"β Error getting spans: {e}")
|
| 66 |
return False
|
|
@@ -72,10 +77,11 @@ def test_phoenix_logging():
|
|
| 72 |
|
| 73 |
if result is not None:
|
| 74 |
print(f"β
Successfully logged {len(result)} evaluations to Phoenix")
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
# Step 5: Verify evaluations were logged
|
| 81 |
print("\n5. Verifying evaluations in Phoenix...")
|
|
@@ -126,6 +132,7 @@ def main():
|
|
| 126 |
print(" 1. Your agent app is running (it starts Phoenix)")
|
| 127 |
print(" 2. You've run your agent at least once to create spans")
|
| 128 |
print(" 3. Phoenix is accessible at http://localhost:6006")
|
|
|
|
| 129 |
|
| 130 |
|
| 131 |
if __name__ == "__main__":
|
|
|
|
| 61 |
print("β οΈ No spans found - you need to run your agent first to create spans")
|
| 62 |
return False
|
| 63 |
|
| 64 |
+
# Debug: Show available columns
|
| 65 |
+
print(f"π Available span columns: {list(spans_df.columns)}")
|
| 66 |
+
input_columns = [col for col in spans_df.columns if 'input' in col.lower()]
|
| 67 |
+
print(f"π Input columns found: {input_columns}")
|
| 68 |
+
|
| 69 |
except Exception as e:
|
| 70 |
print(f"β Error getting spans: {e}")
|
| 71 |
return False
|
|
|
|
| 77 |
|
| 78 |
if result is not None:
|
| 79 |
print(f"β
Successfully logged {len(result)} evaluations to Phoenix")
|
| 80 |
+
if len(result) > 0:
|
| 81 |
+
print("Sample evaluation:")
|
| 82 |
+
print(f" - Score: {result.iloc[0]['score']}")
|
| 83 |
+
print(f" - Label: {result.iloc[0]['label']}")
|
| 84 |
+
print(f" - Explanation: {result.iloc[0]['explanation'][:100]}...")
|
| 85 |
|
| 86 |
# Step 5: Verify evaluations were logged
|
| 87 |
print("\n5. Verifying evaluations in Phoenix...")
|
|
|
|
| 132 |
print(" 1. Your agent app is running (it starts Phoenix)")
|
| 133 |
print(" 2. You've run your agent at least once to create spans")
|
| 134 |
print(" 3. Phoenix is accessible at http://localhost:6006")
|
| 135 |
+
print(" 4. Run 'python debug_spans.py' to see span column structure")
|
| 136 |
|
| 137 |
|
| 138 |
if __name__ == "__main__":
|