Romain Fayoux
commited on
Commit
·
3a7aaed
1
Parent(s):
11a8722
Started to run evaluations outside of submit loop
Browse files- eval/create_dataset.py +23 -0
- eval/eval_notebook.ipynb +135 -0
- eval/evaluators.py +11 -0
eval/create_dataset.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import phoenix as px
|
| 3 |
+
from phoenix.client import Client
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def create_dataset():
|
| 7 |
+
dataset_df = pd.read_json("./data/metadata.jsonl", lines=True)
|
| 8 |
+
|
| 9 |
+
# Script should be run with a running phoenix server, if not uncomment:
|
| 10 |
+
# _ = px.launch_app()
|
| 11 |
+
px_client = Client()
|
| 12 |
+
dataset = px_client.datasets.create_dataset(
|
| 13 |
+
dataframe=dataset_df,
|
| 14 |
+
name="gaia",
|
| 15 |
+
input_keys=["Question"],
|
| 16 |
+
output_keys=["Final answer"],
|
| 17 |
+
metadata_keys=["task_id", "Annotator Metadata", "file_name"],
|
| 18 |
+
)
|
| 19 |
+
print(f"Dataset created: {dataset.id}")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
if __name__ == "__main__":
|
| 23 |
+
create_dataset()
|
eval/eval_notebook.ipynb
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 19,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd\n",
|
| 10 |
+
"import json\n",
|
| 11 |
+
"from phoenix.client import Client\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"# Load the existing spans\n",
|
| 14 |
+
"spans_df = Client().spans.get_spans_dataframe(project_name=\"default\")"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 20,
|
| 20 |
+
"metadata": {},
|
| 21 |
+
"outputs": [],
|
| 22 |
+
"source": [
|
| 23 |
+
"# Load the source of truth\n",
|
| 24 |
+
"dataset_df = pd.read_json(\"../data/metadata.jsonl\", lines=True)"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": 21,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"# Filter by root agents\n",
|
| 34 |
+
"agents_df = spans_df[(spans_df.span_kind == 'AGENT') & (spans_df.parent_id.isna()) & (spans_df.status_code == 'OK')]"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": 22,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [
|
| 42 |
+
{
|
| 43 |
+
"name": "stderr",
|
| 44 |
+
"output_type": "stream",
|
| 45 |
+
"text": [
|
| 46 |
+
"/var/folders/pj/v1zrqj1d10x9_1rd2njh_r_r0000gn/T/ipykernel_98186/3107371246.py:2: SettingWithCopyWarning: \n",
|
| 47 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 48 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 51 |
+
" agents_df[\"task\"] = agents_df[\"attributes.input.value\"].apply(json.loads).apply(lambda x : x[\"task\"]).str.replace(r'\\s*The mentionned file can be downloaded from.*$', '', regex=True)\n"
|
| 52 |
+
]
|
| 53 |
+
}
|
| 54 |
+
],
|
| 55 |
+
"source": [
|
| 56 |
+
"# Retrieve the right question and add the answer\n",
|
| 57 |
+
"agents_df[\"task\"] = agents_df[\"attributes.input.value\"].apply(json.loads).apply(lambda x : x[\"task\"]).str.replace(r'\\s*The mentionned file can be downloaded from.*$', '', regex=True)\n",
|
| 58 |
+
"agents_merged_df = pd.merge(agents_df,dataset_df,how=\"left\",left_on=\"task\", right_on=\"Question\")"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 29,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"from phoenix.evals.evaluators import bind_evaluator, async_evaluate_dataframe\n",
|
| 68 |
+
"from phoenix.evals.metrics import exact_match\n",
|
| 69 |
+
"from evaluators import conciseness_evaluator\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"# Define the evaluator\n",
|
| 72 |
+
"exact_match_eval = bind_evaluator(evaluator=exact_match, input_mapping= { \"output\": \"attributes.output.value\", \"expected\": \"Final answer\"})\n",
|
| 73 |
+
"conciseness_evaluator = bind_evaluator(evaluator=conciseness_evaluator, input_mapping={ \"output\": \"attributes.output.value\", \"expected\": \"Final answer\"})\n",
|
| 74 |
+
"results_df = await async_evaluate_dataframe(agents_merged_df, evaluators=[exact_match_eval, conciseness_evaluator])\n"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 34,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"results_df[\"exact_match\"] = results_df.exact_match_score.apply(json.loads).apply(lambda x : x[\"score\"])\n",
|
| 84 |
+
"results_df[\"conciseness\"] = results_df.conciseness_evaluator_score.apply(json.loads).apply(lambda x : x[\"label\"])\n",
|
| 85 |
+
"results_df[\"agent_type\"] = results_df[\"attributes.smolagents\"].apply(lambda x : \"multi_agent\" if \"managed_agents\" in x else \"llm_agent\")\n",
|
| 86 |
+
"results_filtered_df = results_df[[\"name\", \"span_kind\", \"start_time\", \"context.span_id\", \"context.trace_id\",\"attributes.output.value\", \"task_id\", \"Question\", \"Final answer\", \"agent_type\", \"exact_match_score\", \"conciseness_evaluator_score\", \"exact_match\", \"conciseness\"]]"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": 38,
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"outputs": [
|
| 94 |
+
{
|
| 95 |
+
"name": "stderr",
|
| 96 |
+
"output_type": "stream",
|
| 97 |
+
"text": [
|
| 98 |
+
"/Users/romainfayoux/Documents/Programmation/Final_Assignment_Template/.venv/lib/python3.12/site-packages/phoenix/evals/utils.py:367: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
|
| 99 |
+
" result_df = pd.concat(result_dfs, ignore_index=True)\n"
|
| 100 |
+
]
|
| 101 |
+
}
|
| 102 |
+
],
|
| 103 |
+
"source": [
|
| 104 |
+
"# Upload results\n",
|
| 105 |
+
"import numpy as np\n",
|
| 106 |
+
"from phoenix.evals.utils import to_annotation_dataframe\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"annotation_df = to_annotation_dataframe(results_filtered_df)\n",
|
| 109 |
+
"annotation_df = annotation_df.replace({np.nan: None})\n",
|
| 110 |
+
"Client().spans.log_span_annotations_dataframe(dataframe=annotation_df)\n"
|
| 111 |
+
]
|
| 112 |
+
}
|
| 113 |
+
],
|
| 114 |
+
"metadata": {
|
| 115 |
+
"kernelspec": {
|
| 116 |
+
"display_name": "Final_Assignment_Template",
|
| 117 |
+
"language": "python",
|
| 118 |
+
"name": "python3"
|
| 119 |
+
},
|
| 120 |
+
"language_info": {
|
| 121 |
+
"codemirror_mode": {
|
| 122 |
+
"name": "ipython",
|
| 123 |
+
"version": 3
|
| 124 |
+
},
|
| 125 |
+
"file_extension": ".py",
|
| 126 |
+
"mimetype": "text/x-python",
|
| 127 |
+
"name": "python",
|
| 128 |
+
"nbconvert_exporter": "python",
|
| 129 |
+
"pygments_lexer": "ipython3",
|
| 130 |
+
"version": "3.12.11"
|
| 131 |
+
}
|
| 132 |
+
},
|
| 133 |
+
"nbformat": 4,
|
| 134 |
+
"nbformat_minor": 2
|
| 135 |
+
}
|
eval/evaluators.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from phoenix.evals import create_evaluator
|
| 2 |
+
|
| 3 |
+
@create_evaluator(name="conciseness_evaluator")
|
| 4 |
+
def conciseness_evaluator(output: str, expected: str):
|
| 5 |
+
ratio = (len(output) / len(expected))
|
| 6 |
+
if ratio < 0.5:
|
| 7 |
+
return "too short"
|
| 8 |
+
elif ratio > 3.0:
|
| 9 |
+
return "too long"
|
| 10 |
+
else:
|
| 11 |
+
return "concise"
|