Romain Fayoux
commited on
Commit
·
cdf543a
1
Parent(s):
f087af6
Connecting langchain agent to questions, trying to output the final
Browse files- app.py +6 -2
- langchain_agent.py +30 -20
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -7,8 +7,11 @@ import json
|
|
| 7 |
import re
|
| 8 |
from phoenix.otel import register
|
| 9 |
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
|
|
|
|
| 10 |
from llm_only_agent import LLMOnlyAgent
|
| 11 |
from multi_agent import MultiAgent
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# (Keep Constants as is)
|
| 14 |
# --- Constants ---
|
|
@@ -50,7 +53,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, limit: int | None):
|
|
| 50 |
|
| 51 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 52 |
try:
|
| 53 |
-
agent =
|
| 54 |
except Exception as e:
|
| 55 |
print(f"Error instantiating agent: {e}")
|
| 56 |
return f"Error initializing agent: {e}", None
|
|
@@ -113,7 +116,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None, limit: int | None):
|
|
| 113 |
results_log = []
|
| 114 |
answers_payload = []
|
| 115 |
# Limit and skip youtube for test purposes
|
| 116 |
-
limit =
|
| 117 |
skip_youtube = False
|
| 118 |
if limit is not None:
|
| 119 |
questions_data = questions_data[:limit]
|
|
@@ -253,6 +256,7 @@ if __name__ == "__main__":
|
|
| 253 |
# Telemetry
|
| 254 |
tracer_provider = register(project_name="final_assignment_template")
|
| 255 |
SmolagentsInstrumentor().instrument(tracer_provider=tracer_provider)
|
|
|
|
| 256 |
|
| 257 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 258 |
space_host_startup = os.getenv("SPACE_HOST")
|
|
|
|
| 7 |
import re
|
| 8 |
from phoenix.otel import register
|
| 9 |
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
|
| 10 |
+
from openinference.instrumentation.langchain import LangChainInstrumentor
|
| 11 |
from llm_only_agent import LLMOnlyAgent
|
| 12 |
from multi_agent import MultiAgent
|
| 13 |
+
from langchain_agent import LangChainAgent
|
| 14 |
+
|
| 15 |
|
| 16 |
# (Keep Constants as is)
|
| 17 |
# --- Constants ---
|
|
|
|
| 53 |
|
| 54 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 55 |
try:
|
| 56 |
+
agent = LangChainAgent()
|
| 57 |
except Exception as e:
|
| 58 |
print(f"Error instantiating agent: {e}")
|
| 59 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 116 |
results_log = []
|
| 117 |
answers_payload = []
|
| 118 |
# Limit and skip youtube for test purposes
|
| 119 |
+
limit = 1
|
| 120 |
skip_youtube = False
|
| 121 |
if limit is not None:
|
| 122 |
questions_data = questions_data[:limit]
|
|
|
|
| 256 |
# Telemetry
|
| 257 |
tracer_provider = register(project_name="final_assignment_template")
|
| 258 |
SmolagentsInstrumentor().instrument(tracer_provider=tracer_provider)
|
| 259 |
+
LangChainInstrumentor().instrument(tracer_provider=tracer_provider)
|
| 260 |
|
| 261 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 262 |
space_host_startup = os.getenv("SPACE_HOST")
|
langchain_agent.py
CHANGED
|
@@ -1,34 +1,44 @@
|
|
| 1 |
import os
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
-
from gradio.external import load_blocks_from_huggingface
|
| 4 |
from langchain.agents import create_agent
|
| 5 |
-
from langchain_community.tools.ddg_search.tool import DuckDuckGoSearchResults
|
| 6 |
from langgraph.checkpoint.memory import InMemorySaver
|
| 7 |
from langchain_community.tools import DuckDuckGoSearchRun
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
load_dotenv()
|
| 13 |
-
os.environ["GOOGLE_API_KEY"] = os.getenv("GEMINI_API_KEY")
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 17 |
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
| 18 |
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 19 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
{"configurable": {"thread_id": "1"}},
|
| 32 |
-
)
|
| 33 |
-
|
| 34 |
-
print(response)
|
|
|
|
| 1 |
import os
|
| 2 |
from dotenv import load_dotenv
|
|
|
|
| 3 |
from langchain.agents import create_agent
|
|
|
|
| 4 |
from langgraph.checkpoint.memory import InMemorySaver
|
| 5 |
from langchain_community.tools import DuckDuckGoSearchRun
|
| 6 |
+
from langchain.agents.middleware import (
|
| 7 |
+
ModelCallLimitMiddleware,
|
| 8 |
+
ToolCallLimitMiddleware,
|
| 9 |
+
)
|
| 10 |
+
from langchain.messages import HumanMessage, AIMessage
|
| 11 |
|
| 12 |
load_dotenv()
|
|
|
|
| 13 |
|
| 14 |
+
|
| 15 |
+
class LangChainAgent:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
os.environ["GOOGLE_API_KEY"] = os.getenv("GEMINI_API_KEY")
|
| 18 |
+
|
| 19 |
+
system_prompt = """finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 20 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 21 |
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
| 22 |
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 23 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
|
| 24 |
|
| 25 |
+
self.agent = create_agent(
|
| 26 |
+
model="google_genai:gemini-2.5-flash",
|
| 27 |
+
tools=[DuckDuckGoSearchRun()],
|
| 28 |
+
system_prompt=system_prompt,
|
| 29 |
+
checkpointer=InMemorySaver(),
|
| 30 |
+
middleware=[
|
| 31 |
+
ModelCallLimitMiddleware(run_limit=10, exit_behavior="end"),
|
| 32 |
+
ToolCallLimitMiddleware(run_limit=20, exit_behavior="end"),
|
| 33 |
+
],
|
| 34 |
+
)
|
| 35 |
|
| 36 |
+
def __call__(self, question: str) -> str:
|
| 37 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 38 |
+
response = self.agent.invoke(
|
| 39 |
+
{"messages": [HumanMessage(content=question)]},
|
| 40 |
+
{"configurable": {"thread_id": "1"}, "recursion_limit": 50},
|
| 41 |
+
)
|
| 42 |
+
answer = response["messages"][-1].text()
|
| 43 |
+
print(f"Agent returning answer: {answer}")
|
| 44 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -17,3 +17,4 @@ langchain-google-genai
|
|
| 17 |
duckduckgo-search
|
| 18 |
langchain-community
|
| 19 |
python-dotenv
|
|
|
|
|
|
| 17 |
duckduckgo-search
|
| 18 |
langchain-community
|
| 19 |
python-dotenv
|
| 20 |
+
openinference-instrumentation-langchain
|