Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from catboost import CatBoostClassifier | |
| import torch.nn as nn | |
| import streamlit as st | |
| def load_model(): | |
| catboost_model = CatBoostClassifier(random_seed=42,eval_metric='Accuracy') | |
| catboost_model.load_model("pages/anti_toxic/dont_be_toxic.pt") | |
| model_checkpoint = 'cointegrated/rubert-tiny-toxicity' | |
| tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) | |
| model.classifier=nn.Dropout(0) | |
| model.dropout = nn.Dropout(0) | |
| return catboost_model, tokenizer, model | |
| catboost_model, tokenizer, model = load_model() | |
| def predict(text): | |
| t=tokenizer(text, return_tensors='pt',truncation=True, padding=True) | |
| with torch.no_grad(): | |
| t = model(**t)[0].tolist()[0] | |
| return catboost_model.predict_proba(t) |